Cargando…
MTBP regulates cell survival and therapeutic sensitivity in TP53 wildtype glioblastomas
Background: Glioblastoma (GBM) is highly proliferative and resistant to radio-chemotherapy. Loss of tumor suppressor gene TP53 function frequently occurs at protein level in GBMs. This inhibition is often mediated by other components within the p53 signaling axis, including MDM2, whose binding prote...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6735364/ https://www.ncbi.nlm.nih.gov/pubmed/31534534 http://dx.doi.org/10.7150/thno.35747 |
_version_ | 1783450342350913536 |
---|---|
author | Song, Yifu Zhang, Li Jiang, Yang Hu, Tianhao Zhang, Di Qiao, Qiao Wang, Run Wang, Minghao Han, Sheng |
author_facet | Song, Yifu Zhang, Li Jiang, Yang Hu, Tianhao Zhang, Di Qiao, Qiao Wang, Run Wang, Minghao Han, Sheng |
author_sort | Song, Yifu |
collection | PubMed |
description | Background: Glioblastoma (GBM) is highly proliferative and resistant to radio-chemotherapy. Loss of tumor suppressor gene TP53 function frequently occurs at protein level in GBMs. This inhibition is often mediated by other components within the p53 signaling axis, including MDM2, whose binding protein (MTBP) plays an important role in the regulation of MDM2 and p53 activity. We investigated the role of MTBP in the biology of TP53-wildtype (TP53wt) GBMs. Methods: MTBP expression was examined in TCGA and REMBRANDT datasets. MTBP was silenced or overexpressed in TP53wt GBM cells and glioma stem cells (GSCs). The effects on cell viability, apoptosis, and clonogenicity were assessed. The transcriptional regulation of MTBP was investigated. Results: Upregulation of MTBP was correlated with the Classical molecular subtype, and it predicted poor survival. In TP53wt GBM cells, the protein levels of MTBP were positively associated with those of MDM2 but negatively correlated with those of p53. MTBP knockdown promoted apoptosis and inhibited clonogenicity, while overexpression of this protein enhanced tumorigenicity in vitro and in vivo. The pro-survival effect of MTBP depended on the activity of MDM2 and p53. MTBP was transcriptionally regulated by c-myc, thereby forming a positive regulatory loop. Finally, MTBP silencing increased the sensitivity of TP53wt GSCs to radiation and TMZ treatment in vitro and in vivo. Conclusion: MTBP regulates the cell survival and treatment sensitivity of TP53wt GBMs through MDM2-dependent post-translational modification of p53. MTBP-targeting treatments are potentially useful in increasing patients' survival. |
format | Online Article Text |
id | pubmed-6735364 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-67353642019-09-18 MTBP regulates cell survival and therapeutic sensitivity in TP53 wildtype glioblastomas Song, Yifu Zhang, Li Jiang, Yang Hu, Tianhao Zhang, Di Qiao, Qiao Wang, Run Wang, Minghao Han, Sheng Theranostics Research Paper Background: Glioblastoma (GBM) is highly proliferative and resistant to radio-chemotherapy. Loss of tumor suppressor gene TP53 function frequently occurs at protein level in GBMs. This inhibition is often mediated by other components within the p53 signaling axis, including MDM2, whose binding protein (MTBP) plays an important role in the regulation of MDM2 and p53 activity. We investigated the role of MTBP in the biology of TP53-wildtype (TP53wt) GBMs. Methods: MTBP expression was examined in TCGA and REMBRANDT datasets. MTBP was silenced or overexpressed in TP53wt GBM cells and glioma stem cells (GSCs). The effects on cell viability, apoptosis, and clonogenicity were assessed. The transcriptional regulation of MTBP was investigated. Results: Upregulation of MTBP was correlated with the Classical molecular subtype, and it predicted poor survival. In TP53wt GBM cells, the protein levels of MTBP were positively associated with those of MDM2 but negatively correlated with those of p53. MTBP knockdown promoted apoptosis and inhibited clonogenicity, while overexpression of this protein enhanced tumorigenicity in vitro and in vivo. The pro-survival effect of MTBP depended on the activity of MDM2 and p53. MTBP was transcriptionally regulated by c-myc, thereby forming a positive regulatory loop. Finally, MTBP silencing increased the sensitivity of TP53wt GSCs to radiation and TMZ treatment in vitro and in vivo. Conclusion: MTBP regulates the cell survival and treatment sensitivity of TP53wt GBMs through MDM2-dependent post-translational modification of p53. MTBP-targeting treatments are potentially useful in increasing patients' survival. Ivyspring International Publisher 2019-08-14 /pmc/articles/PMC6735364/ /pubmed/31534534 http://dx.doi.org/10.7150/thno.35747 Text en © The author(s) This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Research Paper Song, Yifu Zhang, Li Jiang, Yang Hu, Tianhao Zhang, Di Qiao, Qiao Wang, Run Wang, Minghao Han, Sheng MTBP regulates cell survival and therapeutic sensitivity in TP53 wildtype glioblastomas |
title | MTBP regulates cell survival and therapeutic sensitivity in TP53 wildtype glioblastomas |
title_full | MTBP regulates cell survival and therapeutic sensitivity in TP53 wildtype glioblastomas |
title_fullStr | MTBP regulates cell survival and therapeutic sensitivity in TP53 wildtype glioblastomas |
title_full_unstemmed | MTBP regulates cell survival and therapeutic sensitivity in TP53 wildtype glioblastomas |
title_short | MTBP regulates cell survival and therapeutic sensitivity in TP53 wildtype glioblastomas |
title_sort | mtbp regulates cell survival and therapeutic sensitivity in tp53 wildtype glioblastomas |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6735364/ https://www.ncbi.nlm.nih.gov/pubmed/31534534 http://dx.doi.org/10.7150/thno.35747 |
work_keys_str_mv | AT songyifu mtbpregulatescellsurvivalandtherapeuticsensitivityintp53wildtypeglioblastomas AT zhangli mtbpregulatescellsurvivalandtherapeuticsensitivityintp53wildtypeglioblastomas AT jiangyang mtbpregulatescellsurvivalandtherapeuticsensitivityintp53wildtypeglioblastomas AT hutianhao mtbpregulatescellsurvivalandtherapeuticsensitivityintp53wildtypeglioblastomas AT zhangdi mtbpregulatescellsurvivalandtherapeuticsensitivityintp53wildtypeglioblastomas AT qiaoqiao mtbpregulatescellsurvivalandtherapeuticsensitivityintp53wildtypeglioblastomas AT wangrun mtbpregulatescellsurvivalandtherapeuticsensitivityintp53wildtypeglioblastomas AT wangminghao mtbpregulatescellsurvivalandtherapeuticsensitivityintp53wildtypeglioblastomas AT hansheng mtbpregulatescellsurvivalandtherapeuticsensitivityintp53wildtypeglioblastomas |