Cargando…

Silicon isotopes in Arctic and sub-Arctic glacial meltwaters: the role of subglacial weathering in the silicon cycle

Glacial environments play an important role in high-latitude marine nutrient cycling, potentially contributing significant fluxes of silicon (Si) to the polar oceans, either as dissolved silicon (DSi) or as dissolvable amorphous silica (ASi). Silicon is a key nutrient in promoting marine primary pro...

Descripción completa

Detalles Bibliográficos
Autores principales: Hatton, Jade E., Hendry, Katharine R., Hawkings, Jonathan R., Wadham, Jemma L., Opfergelt, Sophie, Kohler, Tyler J., Yde, Jacob C., Stibal, Marek, Žárský, Jakub D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6735475/
https://www.ncbi.nlm.nih.gov/pubmed/31534420
http://dx.doi.org/10.1098/rspa.2019.0098
_version_ 1783450360095965184
author Hatton, Jade E.
Hendry, Katharine R.
Hawkings, Jonathan R.
Wadham, Jemma L.
Opfergelt, Sophie
Kohler, Tyler J.
Yde, Jacob C.
Stibal, Marek
Žárský, Jakub D.
author_facet Hatton, Jade E.
Hendry, Katharine R.
Hawkings, Jonathan R.
Wadham, Jemma L.
Opfergelt, Sophie
Kohler, Tyler J.
Yde, Jacob C.
Stibal, Marek
Žárský, Jakub D.
author_sort Hatton, Jade E.
collection PubMed
description Glacial environments play an important role in high-latitude marine nutrient cycling, potentially contributing significant fluxes of silicon (Si) to the polar oceans, either as dissolved silicon (DSi) or as dissolvable amorphous silica (ASi). Silicon is a key nutrient in promoting marine primary productivity, contributing to atmospheric CO(2) removal. We present the current understanding of Si cycling in glacial systems, focusing on the Si isotope (δ(30)Si) composition of glacial meltwaters. We combine existing glacial δ(30)Si data with new measurements from 20 sub-Arctic glaciers, showing that glacial meltwaters consistently export isotopically light DSi compared with non-glacial rivers (+0.16‰ versus +1.38‰). Glacial δ(30)Si(ASi) composition ranges from −0.05‰ to −0.86‰ but exhibits low seasonal variability. Silicon fluxes and δ(30)Si composition from glacial systems are not commonly included in global Si budgets and isotopic mass balance calculations at present. We discuss outstanding questions, including the formation mechanism of ASi and the export of glacial nutrients from fjords. Finally, we provide a contextual framework for the recent advances in our understanding of subglacial Si cycling and highlight critical research avenues for assessing potential future changes in these environments.
format Online
Article
Text
id pubmed-6735475
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher The Royal Society Publishing
record_format MEDLINE/PubMed
spelling pubmed-67354752019-09-18 Silicon isotopes in Arctic and sub-Arctic glacial meltwaters: the role of subglacial weathering in the silicon cycle Hatton, Jade E. Hendry, Katharine R. Hawkings, Jonathan R. Wadham, Jemma L. Opfergelt, Sophie Kohler, Tyler J. Yde, Jacob C. Stibal, Marek Žárský, Jakub D. Proc Math Phys Eng Sci Review Article Glacial environments play an important role in high-latitude marine nutrient cycling, potentially contributing significant fluxes of silicon (Si) to the polar oceans, either as dissolved silicon (DSi) or as dissolvable amorphous silica (ASi). Silicon is a key nutrient in promoting marine primary productivity, contributing to atmospheric CO(2) removal. We present the current understanding of Si cycling in glacial systems, focusing on the Si isotope (δ(30)Si) composition of glacial meltwaters. We combine existing glacial δ(30)Si data with new measurements from 20 sub-Arctic glaciers, showing that glacial meltwaters consistently export isotopically light DSi compared with non-glacial rivers (+0.16‰ versus +1.38‰). Glacial δ(30)Si(ASi) composition ranges from −0.05‰ to −0.86‰ but exhibits low seasonal variability. Silicon fluxes and δ(30)Si composition from glacial systems are not commonly included in global Si budgets and isotopic mass balance calculations at present. We discuss outstanding questions, including the formation mechanism of ASi and the export of glacial nutrients from fjords. Finally, we provide a contextual framework for the recent advances in our understanding of subglacial Si cycling and highlight critical research avenues for assessing potential future changes in these environments. The Royal Society Publishing 2019-08 2019-08-14 /pmc/articles/PMC6735475/ /pubmed/31534420 http://dx.doi.org/10.1098/rspa.2019.0098 Text en © 2019 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Review Article
Hatton, Jade E.
Hendry, Katharine R.
Hawkings, Jonathan R.
Wadham, Jemma L.
Opfergelt, Sophie
Kohler, Tyler J.
Yde, Jacob C.
Stibal, Marek
Žárský, Jakub D.
Silicon isotopes in Arctic and sub-Arctic glacial meltwaters: the role of subglacial weathering in the silicon cycle
title Silicon isotopes in Arctic and sub-Arctic glacial meltwaters: the role of subglacial weathering in the silicon cycle
title_full Silicon isotopes in Arctic and sub-Arctic glacial meltwaters: the role of subglacial weathering in the silicon cycle
title_fullStr Silicon isotopes in Arctic and sub-Arctic glacial meltwaters: the role of subglacial weathering in the silicon cycle
title_full_unstemmed Silicon isotopes in Arctic and sub-Arctic glacial meltwaters: the role of subglacial weathering in the silicon cycle
title_short Silicon isotopes in Arctic and sub-Arctic glacial meltwaters: the role of subglacial weathering in the silicon cycle
title_sort silicon isotopes in arctic and sub-arctic glacial meltwaters: the role of subglacial weathering in the silicon cycle
topic Review Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6735475/
https://www.ncbi.nlm.nih.gov/pubmed/31534420
http://dx.doi.org/10.1098/rspa.2019.0098
work_keys_str_mv AT hattonjadee siliconisotopesinarcticandsubarcticglacialmeltwaterstheroleofsubglacialweatheringinthesiliconcycle
AT hendrykathariner siliconisotopesinarcticandsubarcticglacialmeltwaterstheroleofsubglacialweatheringinthesiliconcycle
AT hawkingsjonathanr siliconisotopesinarcticandsubarcticglacialmeltwaterstheroleofsubglacialweatheringinthesiliconcycle
AT wadhamjemmal siliconisotopesinarcticandsubarcticglacialmeltwaterstheroleofsubglacialweatheringinthesiliconcycle
AT opfergeltsophie siliconisotopesinarcticandsubarcticglacialmeltwaterstheroleofsubglacialweatheringinthesiliconcycle
AT kohlertylerj siliconisotopesinarcticandsubarcticglacialmeltwaterstheroleofsubglacialweatheringinthesiliconcycle
AT ydejacobc siliconisotopesinarcticandsubarcticglacialmeltwaterstheroleofsubglacialweatheringinthesiliconcycle
AT stibalmarek siliconisotopesinarcticandsubarcticglacialmeltwaterstheroleofsubglacialweatheringinthesiliconcycle
AT zarskyjakubd siliconisotopesinarcticandsubarcticglacialmeltwaterstheroleofsubglacialweatheringinthesiliconcycle