Cargando…
Proteasome dysfunction induces excessive proteome instability and loss of mitostasis that can be mitigated by enhancing mitochondrial fusion or autophagy
The ubiquitin-proteasome pathway (UPP) is central to proteostasis network (PN) functionality and proteome quality control. Yet, the functional implication of the UPP in tissue homeodynamics at the whole organism level and its potential cross-talk with other proteostatic or mitostatic modules are not...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6735541/ https://www.ncbi.nlm.nih.gov/pubmed/31002009 http://dx.doi.org/10.1080/15548627.2019.1596477 |
_version_ | 1783450370711748608 |
---|---|
author | Tsakiri, Eleni N. Gumeni, Sentiljana Vougas, Konstantinos Pendin, Diana Papassideri, Issidora Daga, Andrea Gorgoulis, Vassilis Juhász, Gábor Scorrano, Luca Trougakos, Ioannis P. |
author_facet | Tsakiri, Eleni N. Gumeni, Sentiljana Vougas, Konstantinos Pendin, Diana Papassideri, Issidora Daga, Andrea Gorgoulis, Vassilis Juhász, Gábor Scorrano, Luca Trougakos, Ioannis P. |
author_sort | Tsakiri, Eleni N. |
collection | PubMed |
description | The ubiquitin-proteasome pathway (UPP) is central to proteostasis network (PN) functionality and proteome quality control. Yet, the functional implication of the UPP in tissue homeodynamics at the whole organism level and its potential cross-talk with other proteostatic or mitostatic modules are not well understood. We show here that knock down (KD) of proteasome subunits in Drosophila flies, induced, for most subunits, developmental lethality. Ubiquitous or tissue specific proteasome dysfunction triggered systemic proteome instability and activation of PN modules, including macroautophagy/autophagy, molecular chaperones and the antioxidant cncC (the fly ortholog of NFE2L2/Nrf2) pathway. Also, proteasome KD increased genomic instability, altered metabolic pathways and severely disrupted mitochondrial functionality, triggering a cncC-dependent upregulation of mitostatic genes and enhanced rates of mitophagy. Whereas, overexpression of key regulators of antioxidant responses (e.g., cncC or foxo) could not suppress the deleterious effects of proteasome dysfunction; these were alleviated in both larvae and adult flies by modulating mitochondrial dynamics towards increased fusion or by enhancing autophagy. Our findings reveal the extensive functional wiring of genomic, proteostatic and mitostatic modules in higher metazoans. Also, they support the notion that age-related increase of proteotoxic stress due to decreased UPP activity deregulates all aspects of cellular functionality being thus a driving force for most age-related diseases. Abbreviations: ALP: autophagy-lysosome pathway; ARE: antioxidant response element; Atg8a: autophagy-related 8a; ATPsynβ: ATP synthase, β subunit; C-L: caspase-like proteasomal activity; cncC: cap-n-collar isoform-C; CT-L: chymotrypsin-like proteasomal activity; Drp1: dynamin related protein 1; ER: endoplasmic reticulum; foxo: forkhead box, sub-group O; GLU: glucose; GFP: green fluorescent protein; GLY: glycogen; Hsf: heat shock factor; Hsp: Heat shock protein; Keap1: kelch-like ECH-associated protein 1; Marf: mitochondrial assembly regulatory factor; NFE2L2/Nrf2: nuclear factor, erythroid 2 like 2; Opa1: optic atrophy 1; PN: proteostasis network; RNAi: RNA interference; ROS: reactive oxygen species; ref(2)P: refractory to sigma P; SQSTM1: sequestosome 1; SdhA: succinate dehydrogenase, subunit A; T-L: trypsin-like proteasomal activity; TREH: trehalose; UAS: upstream activation sequence; Ub: ubiquitin; UPR: unfolded protein response; UPP: ubiquitin-proteasome pathway. |
format | Online Article Text |
id | pubmed-6735541 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-67355412019-09-16 Proteasome dysfunction induces excessive proteome instability and loss of mitostasis that can be mitigated by enhancing mitochondrial fusion or autophagy Tsakiri, Eleni N. Gumeni, Sentiljana Vougas, Konstantinos Pendin, Diana Papassideri, Issidora Daga, Andrea Gorgoulis, Vassilis Juhász, Gábor Scorrano, Luca Trougakos, Ioannis P. Autophagy Research Paper The ubiquitin-proteasome pathway (UPP) is central to proteostasis network (PN) functionality and proteome quality control. Yet, the functional implication of the UPP in tissue homeodynamics at the whole organism level and its potential cross-talk with other proteostatic or mitostatic modules are not well understood. We show here that knock down (KD) of proteasome subunits in Drosophila flies, induced, for most subunits, developmental lethality. Ubiquitous or tissue specific proteasome dysfunction triggered systemic proteome instability and activation of PN modules, including macroautophagy/autophagy, molecular chaperones and the antioxidant cncC (the fly ortholog of NFE2L2/Nrf2) pathway. Also, proteasome KD increased genomic instability, altered metabolic pathways and severely disrupted mitochondrial functionality, triggering a cncC-dependent upregulation of mitostatic genes and enhanced rates of mitophagy. Whereas, overexpression of key regulators of antioxidant responses (e.g., cncC or foxo) could not suppress the deleterious effects of proteasome dysfunction; these were alleviated in both larvae and adult flies by modulating mitochondrial dynamics towards increased fusion or by enhancing autophagy. Our findings reveal the extensive functional wiring of genomic, proteostatic and mitostatic modules in higher metazoans. Also, they support the notion that age-related increase of proteotoxic stress due to decreased UPP activity deregulates all aspects of cellular functionality being thus a driving force for most age-related diseases. Abbreviations: ALP: autophagy-lysosome pathway; ARE: antioxidant response element; Atg8a: autophagy-related 8a; ATPsynβ: ATP synthase, β subunit; C-L: caspase-like proteasomal activity; cncC: cap-n-collar isoform-C; CT-L: chymotrypsin-like proteasomal activity; Drp1: dynamin related protein 1; ER: endoplasmic reticulum; foxo: forkhead box, sub-group O; GLU: glucose; GFP: green fluorescent protein; GLY: glycogen; Hsf: heat shock factor; Hsp: Heat shock protein; Keap1: kelch-like ECH-associated protein 1; Marf: mitochondrial assembly regulatory factor; NFE2L2/Nrf2: nuclear factor, erythroid 2 like 2; Opa1: optic atrophy 1; PN: proteostasis network; RNAi: RNA interference; ROS: reactive oxygen species; ref(2)P: refractory to sigma P; SQSTM1: sequestosome 1; SdhA: succinate dehydrogenase, subunit A; T-L: trypsin-like proteasomal activity; TREH: trehalose; UAS: upstream activation sequence; Ub: ubiquitin; UPR: unfolded protein response; UPP: ubiquitin-proteasome pathway. Taylor & Francis 2019-04-19 /pmc/articles/PMC6735541/ /pubmed/31002009 http://dx.doi.org/10.1080/15548627.2019.1596477 Text en © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. |
spellingShingle | Research Paper Tsakiri, Eleni N. Gumeni, Sentiljana Vougas, Konstantinos Pendin, Diana Papassideri, Issidora Daga, Andrea Gorgoulis, Vassilis Juhász, Gábor Scorrano, Luca Trougakos, Ioannis P. Proteasome dysfunction induces excessive proteome instability and loss of mitostasis that can be mitigated by enhancing mitochondrial fusion or autophagy |
title | Proteasome dysfunction induces excessive proteome instability and loss of mitostasis that can be mitigated by enhancing mitochondrial fusion or autophagy |
title_full | Proteasome dysfunction induces excessive proteome instability and loss of mitostasis that can be mitigated by enhancing mitochondrial fusion or autophagy |
title_fullStr | Proteasome dysfunction induces excessive proteome instability and loss of mitostasis that can be mitigated by enhancing mitochondrial fusion or autophagy |
title_full_unstemmed | Proteasome dysfunction induces excessive proteome instability and loss of mitostasis that can be mitigated by enhancing mitochondrial fusion or autophagy |
title_short | Proteasome dysfunction induces excessive proteome instability and loss of mitostasis that can be mitigated by enhancing mitochondrial fusion or autophagy |
title_sort | proteasome dysfunction induces excessive proteome instability and loss of mitostasis that can be mitigated by enhancing mitochondrial fusion or autophagy |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6735541/ https://www.ncbi.nlm.nih.gov/pubmed/31002009 http://dx.doi.org/10.1080/15548627.2019.1596477 |
work_keys_str_mv | AT tsakirielenin proteasomedysfunctioninducesexcessiveproteomeinstabilityandlossofmitostasisthatcanbemitigatedbyenhancingmitochondrialfusionorautophagy AT gumenisentiljana proteasomedysfunctioninducesexcessiveproteomeinstabilityandlossofmitostasisthatcanbemitigatedbyenhancingmitochondrialfusionorautophagy AT vougaskonstantinos proteasomedysfunctioninducesexcessiveproteomeinstabilityandlossofmitostasisthatcanbemitigatedbyenhancingmitochondrialfusionorautophagy AT pendindiana proteasomedysfunctioninducesexcessiveproteomeinstabilityandlossofmitostasisthatcanbemitigatedbyenhancingmitochondrialfusionorautophagy AT papassideriissidora proteasomedysfunctioninducesexcessiveproteomeinstabilityandlossofmitostasisthatcanbemitigatedbyenhancingmitochondrialfusionorautophagy AT dagaandrea proteasomedysfunctioninducesexcessiveproteomeinstabilityandlossofmitostasisthatcanbemitigatedbyenhancingmitochondrialfusionorautophagy AT gorgoulisvassilis proteasomedysfunctioninducesexcessiveproteomeinstabilityandlossofmitostasisthatcanbemitigatedbyenhancingmitochondrialfusionorautophagy AT juhaszgabor proteasomedysfunctioninducesexcessiveproteomeinstabilityandlossofmitostasisthatcanbemitigatedbyenhancingmitochondrialfusionorautophagy AT scorranoluca proteasomedysfunctioninducesexcessiveproteomeinstabilityandlossofmitostasisthatcanbemitigatedbyenhancingmitochondrialfusionorautophagy AT trougakosioannisp proteasomedysfunctioninducesexcessiveproteomeinstabilityandlossofmitostasisthatcanbemitigatedbyenhancingmitochondrialfusionorautophagy |