Cargando…
Double-strand breaks in ribosomal RNA genes activate a distinct signaling and chromatin response to facilitate nucleolar restructuring and repair
The nucleolus is a nuclear sub-domain containing the most highly transcribed genes in the genome. Hundreds of human ribosomal RNA (rRNA) genes, located in the nucleolus, rely on constant maintenance. DNA double-strand breaks (DSBs) in rRNA genes activate the ATM kinase, repress rRNA transcription an...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6735822/ https://www.ncbi.nlm.nih.gov/pubmed/31184714 http://dx.doi.org/10.1093/nar/gkz518 |
_version_ | 1783450417803296768 |
---|---|
author | Korsholm, Lea M Gál, Zita Lin, Lin Quevedo, Oliver Ahmad, Diana A Dulina, Ekaterina Luo, Yonglun Bartek, Jiri Larsen, Dorthe H |
author_facet | Korsholm, Lea M Gál, Zita Lin, Lin Quevedo, Oliver Ahmad, Diana A Dulina, Ekaterina Luo, Yonglun Bartek, Jiri Larsen, Dorthe H |
author_sort | Korsholm, Lea M |
collection | PubMed |
description | The nucleolus is a nuclear sub-domain containing the most highly transcribed genes in the genome. Hundreds of human ribosomal RNA (rRNA) genes, located in the nucleolus, rely on constant maintenance. DNA double-strand breaks (DSBs) in rRNA genes activate the ATM kinase, repress rRNA transcription and induce nucleolar cap formation. Yet how ribosomal-DNA (rDNA) lesions are detected and processed remains elusive. Here, we use CRISPR/Cas9-mediated induction of DSBs and report a chromatin response unique to rDNA depending on ATM-phosphorylation of the nucleolar protein TCOF1 and recruitment of the MRE11–RAD50–NBS1 (MRN) complex via the NBS1-subunit. NBS1- and MRE11-depleted cells fail to suppress rRNA transcription and to translocate rDNA into nucleolar caps. Furthermore, the DNA damage response (DDR) kinase ATR operates downstream of the ATM-TCOF1-MRN interplay and is required to fully suppress rRNA transcription and complete DSB-induced nucleolar restructuring. Unexpectedly, we find that DSBs in rDNA neither activate checkpoint kinases CHK1/CHK2 nor halt cell-cycle progression, yet the nucleolar-DDR protects against genomic aberrations and cell death. Our data highlight the concept of a specialized nucleolar DNA damage response (n-DDR) with a distinct protein composition, spatial organization and checkpoint communication. The n-DDR maintains integrity of ribosomal RNA genes, with implications for cell physiology and disease. |
format | Online Article Text |
id | pubmed-6735822 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-67358222019-09-16 Double-strand breaks in ribosomal RNA genes activate a distinct signaling and chromatin response to facilitate nucleolar restructuring and repair Korsholm, Lea M Gál, Zita Lin, Lin Quevedo, Oliver Ahmad, Diana A Dulina, Ekaterina Luo, Yonglun Bartek, Jiri Larsen, Dorthe H Nucleic Acids Res Genome Integrity, Repair and Replication The nucleolus is a nuclear sub-domain containing the most highly transcribed genes in the genome. Hundreds of human ribosomal RNA (rRNA) genes, located in the nucleolus, rely on constant maintenance. DNA double-strand breaks (DSBs) in rRNA genes activate the ATM kinase, repress rRNA transcription and induce nucleolar cap formation. Yet how ribosomal-DNA (rDNA) lesions are detected and processed remains elusive. Here, we use CRISPR/Cas9-mediated induction of DSBs and report a chromatin response unique to rDNA depending on ATM-phosphorylation of the nucleolar protein TCOF1 and recruitment of the MRE11–RAD50–NBS1 (MRN) complex via the NBS1-subunit. NBS1- and MRE11-depleted cells fail to suppress rRNA transcription and to translocate rDNA into nucleolar caps. Furthermore, the DNA damage response (DDR) kinase ATR operates downstream of the ATM-TCOF1-MRN interplay and is required to fully suppress rRNA transcription and complete DSB-induced nucleolar restructuring. Unexpectedly, we find that DSBs in rDNA neither activate checkpoint kinases CHK1/CHK2 nor halt cell-cycle progression, yet the nucleolar-DDR protects against genomic aberrations and cell death. Our data highlight the concept of a specialized nucleolar DNA damage response (n-DDR) with a distinct protein composition, spatial organization and checkpoint communication. The n-DDR maintains integrity of ribosomal RNA genes, with implications for cell physiology and disease. Oxford University Press 2019-09-05 2019-06-11 /pmc/articles/PMC6735822/ /pubmed/31184714 http://dx.doi.org/10.1093/nar/gkz518 Text en © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Genome Integrity, Repair and Replication Korsholm, Lea M Gál, Zita Lin, Lin Quevedo, Oliver Ahmad, Diana A Dulina, Ekaterina Luo, Yonglun Bartek, Jiri Larsen, Dorthe H Double-strand breaks in ribosomal RNA genes activate a distinct signaling and chromatin response to facilitate nucleolar restructuring and repair |
title | Double-strand breaks in ribosomal RNA genes activate a distinct signaling and chromatin response to facilitate nucleolar restructuring and repair |
title_full | Double-strand breaks in ribosomal RNA genes activate a distinct signaling and chromatin response to facilitate nucleolar restructuring and repair |
title_fullStr | Double-strand breaks in ribosomal RNA genes activate a distinct signaling and chromatin response to facilitate nucleolar restructuring and repair |
title_full_unstemmed | Double-strand breaks in ribosomal RNA genes activate a distinct signaling and chromatin response to facilitate nucleolar restructuring and repair |
title_short | Double-strand breaks in ribosomal RNA genes activate a distinct signaling and chromatin response to facilitate nucleolar restructuring and repair |
title_sort | double-strand breaks in ribosomal rna genes activate a distinct signaling and chromatin response to facilitate nucleolar restructuring and repair |
topic | Genome Integrity, Repair and Replication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6735822/ https://www.ncbi.nlm.nih.gov/pubmed/31184714 http://dx.doi.org/10.1093/nar/gkz518 |
work_keys_str_mv | AT korsholmleam doublestrandbreaksinribosomalrnagenesactivateadistinctsignalingandchromatinresponsetofacilitatenucleolarrestructuringandrepair AT galzita doublestrandbreaksinribosomalrnagenesactivateadistinctsignalingandchromatinresponsetofacilitatenucleolarrestructuringandrepair AT linlin doublestrandbreaksinribosomalrnagenesactivateadistinctsignalingandchromatinresponsetofacilitatenucleolarrestructuringandrepair AT quevedooliver doublestrandbreaksinribosomalrnagenesactivateadistinctsignalingandchromatinresponsetofacilitatenucleolarrestructuringandrepair AT ahmaddianaa doublestrandbreaksinribosomalrnagenesactivateadistinctsignalingandchromatinresponsetofacilitatenucleolarrestructuringandrepair AT dulinaekaterina doublestrandbreaksinribosomalrnagenesactivateadistinctsignalingandchromatinresponsetofacilitatenucleolarrestructuringandrepair AT luoyonglun doublestrandbreaksinribosomalrnagenesactivateadistinctsignalingandchromatinresponsetofacilitatenucleolarrestructuringandrepair AT bartekjiri doublestrandbreaksinribosomalrnagenesactivateadistinctsignalingandchromatinresponsetofacilitatenucleolarrestructuringandrepair AT larsendortheh doublestrandbreaksinribosomalrnagenesactivateadistinctsignalingandchromatinresponsetofacilitatenucleolarrestructuringandrepair |