Cargando…

Double-strand breaks in ribosomal RNA genes activate a distinct signaling and chromatin response to facilitate nucleolar restructuring and repair

The nucleolus is a nuclear sub-domain containing the most highly transcribed genes in the genome. Hundreds of human ribosomal RNA (rRNA) genes, located in the nucleolus, rely on constant maintenance. DNA double-strand breaks (DSBs) in rRNA genes activate the ATM kinase, repress rRNA transcription an...

Descripción completa

Detalles Bibliográficos
Autores principales: Korsholm, Lea M, Gál, Zita, Lin, Lin, Quevedo, Oliver, Ahmad, Diana A, Dulina, Ekaterina, Luo, Yonglun, Bartek, Jiri, Larsen, Dorthe H
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6735822/
https://www.ncbi.nlm.nih.gov/pubmed/31184714
http://dx.doi.org/10.1093/nar/gkz518
_version_ 1783450417803296768
author Korsholm, Lea M
Gál, Zita
Lin, Lin
Quevedo, Oliver
Ahmad, Diana A
Dulina, Ekaterina
Luo, Yonglun
Bartek, Jiri
Larsen, Dorthe H
author_facet Korsholm, Lea M
Gál, Zita
Lin, Lin
Quevedo, Oliver
Ahmad, Diana A
Dulina, Ekaterina
Luo, Yonglun
Bartek, Jiri
Larsen, Dorthe H
author_sort Korsholm, Lea M
collection PubMed
description The nucleolus is a nuclear sub-domain containing the most highly transcribed genes in the genome. Hundreds of human ribosomal RNA (rRNA) genes, located in the nucleolus, rely on constant maintenance. DNA double-strand breaks (DSBs) in rRNA genes activate the ATM kinase, repress rRNA transcription and induce nucleolar cap formation. Yet how ribosomal-DNA (rDNA) lesions are detected and processed remains elusive. Here, we use CRISPR/Cas9-mediated induction of DSBs and report a chromatin response unique to rDNA depending on ATM-phosphorylation of the nucleolar protein TCOF1 and recruitment of the MRE11–RAD50–NBS1 (MRN) complex via the NBS1-subunit. NBS1- and MRE11-depleted cells fail to suppress rRNA transcription and to translocate rDNA into nucleolar caps. Furthermore, the DNA damage response (DDR) kinase ATR operates downstream of the ATM-TCOF1-MRN interplay and is required to fully suppress rRNA transcription and complete DSB-induced nucleolar restructuring. Unexpectedly, we find that DSBs in rDNA neither activate checkpoint kinases CHK1/CHK2 nor halt cell-cycle progression, yet the nucleolar-DDR protects against genomic aberrations and cell death. Our data highlight the concept of a specialized nucleolar DNA damage response (n-DDR) with a distinct protein composition, spatial organization and checkpoint communication. The n-DDR maintains integrity of ribosomal RNA genes, with implications for cell physiology and disease.
format Online
Article
Text
id pubmed-6735822
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-67358222019-09-16 Double-strand breaks in ribosomal RNA genes activate a distinct signaling and chromatin response to facilitate nucleolar restructuring and repair Korsholm, Lea M Gál, Zita Lin, Lin Quevedo, Oliver Ahmad, Diana A Dulina, Ekaterina Luo, Yonglun Bartek, Jiri Larsen, Dorthe H Nucleic Acids Res Genome Integrity, Repair and Replication The nucleolus is a nuclear sub-domain containing the most highly transcribed genes in the genome. Hundreds of human ribosomal RNA (rRNA) genes, located in the nucleolus, rely on constant maintenance. DNA double-strand breaks (DSBs) in rRNA genes activate the ATM kinase, repress rRNA transcription and induce nucleolar cap formation. Yet how ribosomal-DNA (rDNA) lesions are detected and processed remains elusive. Here, we use CRISPR/Cas9-mediated induction of DSBs and report a chromatin response unique to rDNA depending on ATM-phosphorylation of the nucleolar protein TCOF1 and recruitment of the MRE11–RAD50–NBS1 (MRN) complex via the NBS1-subunit. NBS1- and MRE11-depleted cells fail to suppress rRNA transcription and to translocate rDNA into nucleolar caps. Furthermore, the DNA damage response (DDR) kinase ATR operates downstream of the ATM-TCOF1-MRN interplay and is required to fully suppress rRNA transcription and complete DSB-induced nucleolar restructuring. Unexpectedly, we find that DSBs in rDNA neither activate checkpoint kinases CHK1/CHK2 nor halt cell-cycle progression, yet the nucleolar-DDR protects against genomic aberrations and cell death. Our data highlight the concept of a specialized nucleolar DNA damage response (n-DDR) with a distinct protein composition, spatial organization and checkpoint communication. The n-DDR maintains integrity of ribosomal RNA genes, with implications for cell physiology and disease. Oxford University Press 2019-09-05 2019-06-11 /pmc/articles/PMC6735822/ /pubmed/31184714 http://dx.doi.org/10.1093/nar/gkz518 Text en © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Genome Integrity, Repair and Replication
Korsholm, Lea M
Gál, Zita
Lin, Lin
Quevedo, Oliver
Ahmad, Diana A
Dulina, Ekaterina
Luo, Yonglun
Bartek, Jiri
Larsen, Dorthe H
Double-strand breaks in ribosomal RNA genes activate a distinct signaling and chromatin response to facilitate nucleolar restructuring and repair
title Double-strand breaks in ribosomal RNA genes activate a distinct signaling and chromatin response to facilitate nucleolar restructuring and repair
title_full Double-strand breaks in ribosomal RNA genes activate a distinct signaling and chromatin response to facilitate nucleolar restructuring and repair
title_fullStr Double-strand breaks in ribosomal RNA genes activate a distinct signaling and chromatin response to facilitate nucleolar restructuring and repair
title_full_unstemmed Double-strand breaks in ribosomal RNA genes activate a distinct signaling and chromatin response to facilitate nucleolar restructuring and repair
title_short Double-strand breaks in ribosomal RNA genes activate a distinct signaling and chromatin response to facilitate nucleolar restructuring and repair
title_sort double-strand breaks in ribosomal rna genes activate a distinct signaling and chromatin response to facilitate nucleolar restructuring and repair
topic Genome Integrity, Repair and Replication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6735822/
https://www.ncbi.nlm.nih.gov/pubmed/31184714
http://dx.doi.org/10.1093/nar/gkz518
work_keys_str_mv AT korsholmleam doublestrandbreaksinribosomalrnagenesactivateadistinctsignalingandchromatinresponsetofacilitatenucleolarrestructuringandrepair
AT galzita doublestrandbreaksinribosomalrnagenesactivateadistinctsignalingandchromatinresponsetofacilitatenucleolarrestructuringandrepair
AT linlin doublestrandbreaksinribosomalrnagenesactivateadistinctsignalingandchromatinresponsetofacilitatenucleolarrestructuringandrepair
AT quevedooliver doublestrandbreaksinribosomalrnagenesactivateadistinctsignalingandchromatinresponsetofacilitatenucleolarrestructuringandrepair
AT ahmaddianaa doublestrandbreaksinribosomalrnagenesactivateadistinctsignalingandchromatinresponsetofacilitatenucleolarrestructuringandrepair
AT dulinaekaterina doublestrandbreaksinribosomalrnagenesactivateadistinctsignalingandchromatinresponsetofacilitatenucleolarrestructuringandrepair
AT luoyonglun doublestrandbreaksinribosomalrnagenesactivateadistinctsignalingandchromatinresponsetofacilitatenucleolarrestructuringandrepair
AT bartekjiri doublestrandbreaksinribosomalrnagenesactivateadistinctsignalingandchromatinresponsetofacilitatenucleolarrestructuringandrepair
AT larsendortheh doublestrandbreaksinribosomalrnagenesactivateadistinctsignalingandchromatinresponsetofacilitatenucleolarrestructuringandrepair