Cargando…

Comparison of contrast-dependent phase sensitivity in primary visual cortex of mouse, cat and macaque

Neurones in the primary visual cortex (V1) are classified into simple and complex types. Simple cells are phase-sensitive, that is, they modulate their responses according to the position and brightness polarity of edges in their receptive fields. Complex cells are phase invariant, that is, they res...

Descripción completa

Detalles Bibliográficos
Autores principales: Yunzab, Molis, Cloherty, Shaun L., Ibbotson, Michael R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6735947/
https://www.ncbi.nlm.nih.gov/pubmed/31469724
http://dx.doi.org/10.1097/WNR.0000000000001307
Descripción
Sumario:Neurones in the primary visual cortex (V1) are classified into simple and complex types. Simple cells are phase-sensitive, that is, they modulate their responses according to the position and brightness polarity of edges in their receptive fields. Complex cells are phase invariant, that is, they respond to edges in their receptive fields regardless of location or brightness polarity. Simple and complex cells are quantified by the degree of sensitivity to the spatial phases of drifting sinusoidal gratings. Some V1 complex cells become more phase-sensitive at low contrasts. Here we use a standardized analysis method for data derived from grating stimuli developed for macaques to reanalyse data previously collected from cats, and also collect and analyse the responses of 73 mouse V1 neurons. The analysis provides the first consistent comparative study of contrast-dependent phase sensitivity in V1 of mouse, cat and macaque monkey.