Cargando…

Expression profile of genes encoding allatoregulatory neuropeptides in females of the spider Parasteatoda tepidariorum (Araneae, Theridiidae)

Allatoregulatory neuropeptides are multifunctional proteins that take part in the synthesis and secretion of juvenile hormones. In insects, allatostatins are inhibitors of juvenile hormone biosynthesis in the corpora allata while allatotropins, act as stimulators. By quantitative real-time PCR, we a...

Descripción completa

Detalles Bibliográficos
Autores principales: Sawadro, Marta Katarzyna, Bednarek, Agata Wanda, Molenda, Agnieszka Ewa, Babczyńska, Agnieszka Izabela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6736302/
https://www.ncbi.nlm.nih.gov/pubmed/31504071
http://dx.doi.org/10.1371/journal.pone.0222274
Descripción
Sumario:Allatoregulatory neuropeptides are multifunctional proteins that take part in the synthesis and secretion of juvenile hormones. In insects, allatostatins are inhibitors of juvenile hormone biosynthesis in the corpora allata while allatotropins, act as stimulators. By quantitative real-time PCR, we analyzed the gene expression of allatostatin A (PtASTA), allatostatin B (PtASTB), allatostatin C (PtASTC), allatotropin (PtAT) and their receptors (PtASTA-R, PtASTB-R, PtASTC-R, PtAT-R) in various tissues in different age groups of female spiders. In the presented manuscript, the presence of allatostatin A, allatostatin C, and allatotropin are reported in females of the spider P. tepidariorum. The obtained results indicated substantial differences in gene expression levels for allatoregulatory neuropeptides and their receptors in the different tissues. Additionally, the gene expression levels also varied depending on the female age. Strong expression was observed coinciding with sexual maturation in the neuroendocrine and nervous system, and to a lower extent in the digestive tissues and ovaries. Reverse trends were observed for the expression of genes encoding the receptors of these neuropeptides. In conclusion, our study is the first hint that the site of synthesis and secretion is fulfilled by similar structures as observed in other arthropods. In addition, the results of the analysis of spider physiology give evidence that the general functions like regulation of the juvenile hormone synthesis, regulation of the digestive tract and ovaries action, control of vitellogenesis process by the neuropeptides seem to be conserved among arthropods and are the milestone to future functional studies.