Cargando…
Damped resonance for broadband acoustic absorption in one-port and two-port systems
We demonstrate broadband perfect acoustic absorption by damped resonances through inclusion of lossy porous media. By minimally placing the lossy materials around the necks of single-resonance Helmholtz resonators, where acoustic energy is concentrated, we show an increase in absorption bandwidths (...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6736864/ https://www.ncbi.nlm.nih.gov/pubmed/31506458 http://dx.doi.org/10.1038/s41598-019-49222-w |
Sumario: | We demonstrate broadband perfect acoustic absorption by damped resonances through inclusion of lossy porous media. By minimally placing the lossy materials around the necks of single-resonance Helmholtz resonators, where acoustic energy is concentrated, we show an increase in absorption bandwidths (>100% of the resonance frequency). Using the damped resonance, we demonstrate three types of broadband acoustic absorbers in one-port and two-port systems: broadband absorbers (one-port), broadband sparse absorbers (two-port), and broadband duct absorbers (two-port). Our approach for broadband absorption allows to minimize the number of resonances for compact absorbers, while it is beneficial for practical applications owing to the minimum use of porous materials. |
---|