Cargando…
Generative adversarial network based on chaotic time series
Generative adversarial networks (GANs) are becoming increasingly important in the artificial construction of natural images and related functionalities, wherein two types of networks called generators and discriminators evolve through adversarial mechanisms. Using deep convolutional neural networks...
Autores principales: | Naruse, Makoto, Matsubara, Takashi, Chauvet, Nicolas, Kanno, Kazutaka, Yang, Tianyu, Uchida, Atsushi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6736876/ https://www.ncbi.nlm.nih.gov/pubmed/31506525 http://dx.doi.org/10.1038/s41598-019-49397-2 |
Ejemplares similares
-
Dynamic channel selection in wireless communications via a multi-armed bandit algorithm using laser chaos time series
por: Takeuchi, Shungo, et al.
Publicado: (2020) -
Controlling chaotic itinerancy in laser dynamics for reinforcement learning
por: Iwami, Ryugo, et al.
Publicado: (2022) -
Decision making for large-scale multi-armed bandit problems using bias control of chaotic temporal waveforms in semiconductor lasers
por: Morijiri, Kensei, et al.
Publicado: (2022) -
Adaptive model selection in photonic reservoir computing by reinforcement learning
por: Kanno, Kazutaka, et al.
Publicado: (2020) -
Arm order recognition in multi-armed bandit problem with laser chaos time series
por: Narisawa, Naoki, et al.
Publicado: (2021)