Cargando…

Comparative population genomics identified genomic regions and candidate genes associated with fruit domestication traits in peach

Crop evolution is a long‐term process involving selection by natural evolutionary forces and anthropogenic influences; however, the genetic mechanisms underlying the domestication and improvement of fruit crops have not been well studied to date. Here, we performed a population structure analysis in...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Ke, Li, Yong, Deng, Cecilia H., Gardiner, Susan E., Zhu, Gengrui, Fang, Weichao, Chen, Changwen, Wang, Xinwei, Wang, Lirong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6737019/
https://www.ncbi.nlm.nih.gov/pubmed/30950186
http://dx.doi.org/10.1111/pbi.13112
Descripción
Sumario:Crop evolution is a long‐term process involving selection by natural evolutionary forces and anthropogenic influences; however, the genetic mechanisms underlying the domestication and improvement of fruit crops have not been well studied to date. Here, we performed a population structure analysis in peach (Prunus persica) based on the genome‐wide resequencing of 418 accessions and confirmed the presence of an obvious domestication event during evolution. We identified 132 and 106 selective sweeps associated with domestication and improvement, respectively. Analysis of their tissue‐specific expression patterns indicated that the up‐regulation of selection genes during domestication occurred mostly in fruit and seeds as opposed to other organs. However, during the improvement stage, more up‐regulated selection genes were identified in leaves and seeds than in the other organs. Genome‐wide association studies (GWAS) using 4.24 million single nucleotide polymorphisms (SNPs) revealed 171 loci associated with 26 fruit domestication traits. Among these loci, three candidate genes were highly associated with fruit weight and the sorbitol and catechin content in fruit. We demonstrated that as the allele frequency of the SNPs associated with high polyphenol composition decreased during peach evolution, alleles associated with high sugar content increased significantly. This indicates that there is genetic potential for the breeding of more nutritious fruit with enhanced bioactive polyphenols without disturbing a harmonious sugar and acid balance by crossing with wild species. This study also describes the development of the genomic resources necessary for evolutionary research in peach and provides the large‐scale characterization of key agronomic traits in this crop species.