Cargando…
NeTFactor, a framework for identifying transcriptional regulators of gene expression-based biomarkers
Biological and regulatory mechanisms underlying many multi-gene expression-based disease biomarkers are often not readily evident. We describe an innovative framework, NeTFactor, that combines network analyses with gene expression data to identify transcription factors (TFs) that significantly and m...
Autores principales: | Ahsen, Mehmet Eren, Chun, Yoojin, Grishin, Alexander, Grishina, Galina, Stolovitzky, Gustavo, Pandey, Gaurav, Bunyavanich, Supinda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6737052/ https://www.ncbi.nlm.nih.gov/pubmed/31506535 http://dx.doi.org/10.1038/s41598-019-49498-y |
Ejemplares similares
-
Merged Affinity Network Association Clustering: Joint multi-omic/clinical clustering to identify disease endotypes
por: Tyler, Scott R., et al.
Publicado: (2021) -
Integrated study of systemic and local airway transcriptomes in asthma reveals causal mediation of systemic effects by airway key drivers
por: Zhang, Lingdi, et al.
Publicado: (2023) -
A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data
por: Pandey, Gaurav, et al.
Publicado: (2018) -
The Fermi–Dirac distribution provides a calibrated probabilistic output for binary classifiers
por: Kim, Sung-Cheol, et al.
Publicado: (2021) -
Clinical features of COVID-19 mortality: development and validation of a clinical prediction model
por: Yadaw, Arjun S, et al.
Publicado: (2020)