Cargando…

Relative abundance of oceanic juvenile loggerhead sea turtles in relation to nest production at source rookeries: implications for recruitment dynamics

After hatching, juveniles of most sea turtle species undertake long migrations across ocean basins and remain in oceanic habitats for several years. Assessing population abundance and demographic parameters during this oceanic stage is challenging. Two long-recognized deficiencies in population asse...

Descripción completa

Detalles Bibliográficos
Autores principales: Vandeperre, Frederic, Parra, Hugo, Pham, Christopher K., Machete, Miguel, Santos, Marco, Bjorndal, Karen A., Bolten, Alan B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6737082/
https://www.ncbi.nlm.nih.gov/pubmed/31506566
http://dx.doi.org/10.1038/s41598-019-49434-0
Descripción
Sumario:After hatching, juveniles of most sea turtle species undertake long migrations across ocean basins and remain in oceanic habitats for several years. Assessing population abundance and demographic parameters during this oceanic stage is challenging. Two long-recognized deficiencies in population assessment are (i) reliance on trends in numbers of nests or reproductive females at nesting beaches and (ii) ignorance of factors regulating recruitment to the early oceanic stage. To address these critical gaps, we examined 15 years of standardized loggerhead sighting data collected opportunistically by fisheries observers in the Azores archipelago. From 2001 to 2015, 429 loggerheads were sighted during 67,922 km of survey effort. We used a model-based approach to evaluate the influence of environmental factors and present the first estimates of relative abundance of oceanic-stage juvenile sea turtles. During this period, relative abundance of loggerheads in the Azores tracked annual nest abundance at source rookeries in Florida when adjusted for a 3-year lag. This concurrence of abundance patterns indicates that recruitment to the oceanic stage is more dependent on nest abundance at source rookeries than on stochastic processes derived from short term climatic variability, as previously believed.