Cargando…
A deep neural network for 12-lead electrocardiogram interpretation outperforms a conventional algorithm, and its physician overread, in the diagnosis of atrial fibrillation
BACKGROUND: Automated electrocardiogram (ECG) interpretations may be erroneous, and lead to erroneous overreads, including for atrial fibrillation (AF). We compared the accuracy of the first version of a new deep neural network 12-Lead ECG algorithm (Cardiologs®) to the conventional Veritas algorith...
Autores principales: | Smith, Stephen W., Rapin, Jeremy, Li, Jia, Fleureau, Yann, Fennell, William, Walsh, Brooks M., Rosier, Arnaud, Fiorina, Laurent, Gardella, Christophe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6737299/ https://www.ncbi.nlm.nih.gov/pubmed/31517038 http://dx.doi.org/10.1016/j.ijcha.2019.100423 |
Ejemplares similares
-
Electrocardiogram Interpretation
por: Jolobe, O M P
Publicado: (1998) -
Photoplethysmography behind the Ear Outperforms Electrocardiogram for Cardiovascular Monitoring in Dynamic Environments
por: Bradke, Brian S., et al.
Publicado: (2021) -
Assessment of real-time electrocardiogram effects on interpretation quality by emergency physicians
por: Perrichot, Alice, et al.
Publicado: (2023) -
Physician Accuracy in Interpreting Potential ST‐Segment Elevation Myocardial Infarction Electrocardiograms
por: McCabe, James M., et al.
Publicado: (2013) -
Clinical validation of an artificial intelligence algorithm offering cross-platform detection of atrial fibrillation using smart device electrocardiograms
por: Mannhart, D, et al.
Publicado: (2022)