Cargando…

Myostatin dysfunction does not protect from fasting-induced loss of muscle mass in mice

OBJECTIVES: The aim of the study was to investigate if myostatin dysfunction can ameliorate fasting-induced muscle wasting. METHODS: 18-week old males from Berlin high (BEH) strain with myostatin dysfunction and wild type myostatin (BEH+/+) strain were subjected to 48-h food deprivation (FD). Change...

Descripción completa

Detalles Bibliográficos
Autores principales: Fokin, Andrej, Minderis, Petras, Venckunas, Tomas, Lionikas, Arimantas, Kvedaras, Mindaugas, Ratkevicius, Aivaras
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Society of Musculoskeletal and Neuronal Interactions 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6737554/
https://www.ncbi.nlm.nih.gov/pubmed/31475942
Descripción
Sumario:OBJECTIVES: The aim of the study was to investigate if myostatin dysfunction can ameliorate fasting-induced muscle wasting. METHODS: 18-week old males from Berlin high (BEH) strain with myostatin dysfunction and wild type myostatin (BEH+/+) strain were subjected to 48-h food deprivation (FD). Changes in body composition as well as contractile properties of soleus (SOL) and extensor digitorum longus (EDL) muscles were studied. RESULTS: BEH mice were heavier than BEH+/+ mice (56.0±2.5 vs. 49.9±2.8 g, P<0.001, respectively). FD induced similar loss of body mass in BEH and BEH+/+ mice (16.6±2.4 vs. 17.4±2.2%, P>0.05), but only BEH mice experienced wasting of the gastrocnemius, tibialis anterior and plantaris muscles. FD induced a marked decrease in specific muscle force of SOL. EDL of BEH mice tended to be protected from this decline. CONCLUSION: Myostatin dysfunction does not protect from loss of muscle mass during fasting.