Cargando…

Impact of a diet and activity health promotion intervention on regional patterns of DNA methylation

BACKGROUND: Studies demonstrate the impact of diet and physical activity on epigenetic biomarkers, specifically DNA methylation. However, no intervention studies have examined the combined impact of dietary and activity changes on the blood epigenome. The objective of this study was to examine the i...

Descripción completa

Detalles Bibliográficos
Autores principales: Hibler, Elizabeth, Huang, Lei, Andrade, Jorge, Spring, Bonnie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6737702/
https://www.ncbi.nlm.nih.gov/pubmed/31506096
http://dx.doi.org/10.1186/s13148-019-0707-0
_version_ 1783450710113779712
author Hibler, Elizabeth
Huang, Lei
Andrade, Jorge
Spring, Bonnie
author_facet Hibler, Elizabeth
Huang, Lei
Andrade, Jorge
Spring, Bonnie
author_sort Hibler, Elizabeth
collection PubMed
description BACKGROUND: Studies demonstrate the impact of diet and physical activity on epigenetic biomarkers, specifically DNA methylation. However, no intervention studies have examined the combined impact of dietary and activity changes on the blood epigenome. The objective of this study was to examine the impact of the Make Better Choices 2 (MBC2) healthy diet and activity intervention on patterns of epigenome-wide DNA methylation. The MBC2 study was a 9-month randomized controlled trial among adults aged 18–65 with non-optimal levels of health behaviors. The study compared three 12-week interventions to (1) simultaneously increase exercise and fruit/vegetable intake, while decreasing sedentary leisure screen time; (2) sequentially increase fruit/vegetable intake and decrease leisure screen time first, then increase exercise; (3) increase sleep and decrease stress (control). We collected blood samples at baseline, 3 and 9 months, and measured DNA methylation using the Illumina EPIC (850 k) BeadChip. We examined region-based differential methylation patterns using linear regression models with the false discovery rate of 0.05. We also conducted pathway analysis using gene ontology (GO), KEGG, and IPA canonical pathway databases. RESULTS: We found no differences between the MBC2 population (n = 340) and the subsample with DNA methylation measured (n = 68) on baseline characteristics or the impact of the intervention on behavior change. We identified no differentially methylated regions at baseline between the control versus intervention groups. At 3 versus 9 months, we identified 154 and 298 differentially methylated regions, respectively, between controls compared to pooled samples from sequential and simultaneous groups. In the GO database, we identified two gene ontology terms related to hemophilic cell adhesion and cell-cell adhesion. In IPA analysis, we found pathways related to carcinogenesis including PI3K/AKT, Wnt/β-catenin, sonic hedgehog, and p53 signaling. We observed an overlap between 3 and 9 months, including the GDP-l-fucose biosynthesis I, methylmalonyl metabolism, and estrogen-mediated cell cycle regulation pathways. CONCLUSIONS: The results demonstrate that the MBC2 diet and physical activity intervention impacts patterns of DNA methylation in gene regions related to cell cycle regulation and carcinogenesis. Future studies will examine DNA methylation as a biomarker to identify populations that may particularly benefit from incorporating health behavior change into plans for precision prevention. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13148-019-0707-0) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6737702
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-67377022019-09-16 Impact of a diet and activity health promotion intervention on regional patterns of DNA methylation Hibler, Elizabeth Huang, Lei Andrade, Jorge Spring, Bonnie Clin Epigenetics Research BACKGROUND: Studies demonstrate the impact of diet and physical activity on epigenetic biomarkers, specifically DNA methylation. However, no intervention studies have examined the combined impact of dietary and activity changes on the blood epigenome. The objective of this study was to examine the impact of the Make Better Choices 2 (MBC2) healthy diet and activity intervention on patterns of epigenome-wide DNA methylation. The MBC2 study was a 9-month randomized controlled trial among adults aged 18–65 with non-optimal levels of health behaviors. The study compared three 12-week interventions to (1) simultaneously increase exercise and fruit/vegetable intake, while decreasing sedentary leisure screen time; (2) sequentially increase fruit/vegetable intake and decrease leisure screen time first, then increase exercise; (3) increase sleep and decrease stress (control). We collected blood samples at baseline, 3 and 9 months, and measured DNA methylation using the Illumina EPIC (850 k) BeadChip. We examined region-based differential methylation patterns using linear regression models with the false discovery rate of 0.05. We also conducted pathway analysis using gene ontology (GO), KEGG, and IPA canonical pathway databases. RESULTS: We found no differences between the MBC2 population (n = 340) and the subsample with DNA methylation measured (n = 68) on baseline characteristics or the impact of the intervention on behavior change. We identified no differentially methylated regions at baseline between the control versus intervention groups. At 3 versus 9 months, we identified 154 and 298 differentially methylated regions, respectively, between controls compared to pooled samples from sequential and simultaneous groups. In the GO database, we identified two gene ontology terms related to hemophilic cell adhesion and cell-cell adhesion. In IPA analysis, we found pathways related to carcinogenesis including PI3K/AKT, Wnt/β-catenin, sonic hedgehog, and p53 signaling. We observed an overlap between 3 and 9 months, including the GDP-l-fucose biosynthesis I, methylmalonyl metabolism, and estrogen-mediated cell cycle regulation pathways. CONCLUSIONS: The results demonstrate that the MBC2 diet and physical activity intervention impacts patterns of DNA methylation in gene regions related to cell cycle regulation and carcinogenesis. Future studies will examine DNA methylation as a biomarker to identify populations that may particularly benefit from incorporating health behavior change into plans for precision prevention. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13148-019-0707-0) contains supplementary material, which is available to authorized users. BioMed Central 2019-09-11 /pmc/articles/PMC6737702/ /pubmed/31506096 http://dx.doi.org/10.1186/s13148-019-0707-0 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Hibler, Elizabeth
Huang, Lei
Andrade, Jorge
Spring, Bonnie
Impact of a diet and activity health promotion intervention on regional patterns of DNA methylation
title Impact of a diet and activity health promotion intervention on regional patterns of DNA methylation
title_full Impact of a diet and activity health promotion intervention on regional patterns of DNA methylation
title_fullStr Impact of a diet and activity health promotion intervention on regional patterns of DNA methylation
title_full_unstemmed Impact of a diet and activity health promotion intervention on regional patterns of DNA methylation
title_short Impact of a diet and activity health promotion intervention on regional patterns of DNA methylation
title_sort impact of a diet and activity health promotion intervention on regional patterns of dna methylation
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6737702/
https://www.ncbi.nlm.nih.gov/pubmed/31506096
http://dx.doi.org/10.1186/s13148-019-0707-0
work_keys_str_mv AT hiblerelizabeth impactofadietandactivityhealthpromotioninterventiononregionalpatternsofdnamethylation
AT huanglei impactofadietandactivityhealthpromotioninterventiononregionalpatternsofdnamethylation
AT andradejorge impactofadietandactivityhealthpromotioninterventiononregionalpatternsofdnamethylation
AT springbonnie impactofadietandactivityhealthpromotioninterventiononregionalpatternsofdnamethylation