Cargando…
Machine Learning Classifiers for Endometriosis Using Transcriptomics and Methylomics Data
Endometriosis is a complex and common gynecological disorder yet a poorly understood disease affecting about 176 million women worldwide and causing significant impact on their quality of life and economic burden. Neither a definitive clinical symptom nor a minimally invasive diagnostic method is av...
Autores principales: | Akter, Sadia, Xu, Dong, Nagel, Susan C., Bromfield, John J., Pelch, Katherine, Wilshire, Gilbert B., Joshi, Trupti |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6737999/ https://www.ncbi.nlm.nih.gov/pubmed/31552087 http://dx.doi.org/10.3389/fgene.2019.00766 |
Ejemplares similares
-
Data-Mining Approach on Transcriptomics and Methylomics Placental Analysis Highlights Genes in Fetal Growth Restriction
por: Chabrun, Floris, et al.
Publicado: (2020) -
Age Is Important for the Early-Stage Detection of Breast Cancer on Both Transcriptomic and Methylomic Biomarkers
por: Feng, Xin, et al.
Publicado: (2019) -
Integration of Transcriptome and Methylome Analyses Provides Insight Into the Pathway of Floral Scent Biosynthesis in Prunus mume
por: Yuan, Xi, et al.
Publicado: (2021) -
Integrated analyses of the methylome and transcriptome to unravel sex differences in the perirenal fat from suckling lambs
por: Fonseca, Pablo A. S., et al.
Publicado: (2022) -
Developmental Dioxin Exposure Alters the Methylome of Adult Male Zebrafish Gonads
por: Akemann, Camille, et al.
Publicado: (2019)