Cargando…
Machine learning-based prediction of breast cancer growth rate in vivo
BACKGROUND: Determining the rate of breast cancer (BC) growth in vivo, which can predict prognosis, has remained elusive despite its relevance for treatment, screening recommendations and medicolegal practice. We developed a model that predicts the rate of in vivo tumour growth using a unique study...
Autores principales: | Bhattarai, Shristi, Klimov, Sergey, Aleskandarany, Mohammed A., Burrell, Helen, Wormall, Anthony, Green, Andrew R., Rida, Padmashree, Ellis, Ian O., Osan, Remus M., Rakha, Emad A., Aneja, Ritu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6738119/ https://www.ncbi.nlm.nih.gov/pubmed/31395950 http://dx.doi.org/10.1038/s41416-019-0539-x |
Ejemplares similares
-
Novel immunohistochemistry-based signatures to predict metastatic site of triple-negative breast cancers
por: Klimov, Sergey, et al.
Publicado: (2017) -
A whole slide image-based machine learning approach to predict ductal carcinoma in situ (DCIS) recurrence risk
por: Klimov, Sergey, et al.
Publicado: (2019) -
Combined HER3-EGFR score in triple-negative breast cancer provides prognostic and predictive significance superior to individual biomarkers
por: Ogden, Angela, et al.
Publicado: (2020) -
Panoptic Overview of Triple-Negative Breast Cancer in Nigeria: Current Challenges and Promising Global Initiatives
por: Wright, Nikita, et al.
Publicado: (2018) -
KIFCI, a novel putative prognostic biomarker for ovarian adenocarcinomas: delineating protein interaction networks and signaling circuitries
por: Pawar, Shrikant, et al.
Publicado: (2014)