Cargando…
Construction of gene causal regulatory networks using microarray data with the coefficient of intrinsic dependence
BACKGROUND: In the past two decades, biologists have been able to identify the gene signatures associated with various phenotypes through the monitoring of gene expressions with high-throughput biotechnologies. These gene signatures have in turn been successfully applied to drug development, disease...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6738364/ https://www.ncbi.nlm.nih.gov/pubmed/31512008 http://dx.doi.org/10.1186/s40529-019-0268-8 |
_version_ | 1783450811103182848 |
---|---|
author | Liu, Li-yu Daisy Hsiao, Ya-Chun Chen, Hung-Chi Yang, Yun-Wei Chang, Men-Chi |
author_facet | Liu, Li-yu Daisy Hsiao, Ya-Chun Chen, Hung-Chi Yang, Yun-Wei Chang, Men-Chi |
author_sort | Liu, Li-yu Daisy |
collection | PubMed |
description | BACKGROUND: In the past two decades, biologists have been able to identify the gene signatures associated with various phenotypes through the monitoring of gene expressions with high-throughput biotechnologies. These gene signatures have in turn been successfully applied to drug development, disease prevention, crop improvement, etc. However, ignoring the interactions among genes has weakened the predictive power of gene signatures in practical applications. Gene regulatory networks, in which genes are represented by nodes and the associations between genes are represented by edges, are typically constructed to analyze and visualize such gene interactions. More specifically, the present study sought to measure gene–gene associations by using the coefficient of intrinsic dependence (CID) to capture more nonlinear as well as cause-effect gene relationships. RESULTS: A stepwise procedure using the CID along with the partial coefficient of intrinsic dependence (pCID) was demonstrated for the rebuilding of simulated networks and the well-known CBF-COR pathway under cold stress using Arabidopsis microarray data. The procedure was also applied to the construction of bHLH gene regulatory pathways under abiotic stresses using rice microarray data, in which OsbHLH104, a putative phytochrome-interacting factor (OsPIF14), and OsbHLH060, a positive regulator of iron homeostasis (OsPRI1) were inferred as the most affiliated genes. The inferred regulatory pathways were verified through literature reviews. CONCLUSIONS: The proposed method can efficiently decipher gene regulatory pathways and may assist in achieving higher predictive power in practical applications. The lack of any mention in the literature of some of the regulatory event may have been due to the high complexity of the regulatory systems in the plant transcription, a possibility which could potentially be confirmed in the near future given ongoing rapid developments in bio-technology. |
format | Online Article Text |
id | pubmed-6738364 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-67383642019-09-25 Construction of gene causal regulatory networks using microarray data with the coefficient of intrinsic dependence Liu, Li-yu Daisy Hsiao, Ya-Chun Chen, Hung-Chi Yang, Yun-Wei Chang, Men-Chi Bot Stud Original Article BACKGROUND: In the past two decades, biologists have been able to identify the gene signatures associated with various phenotypes through the monitoring of gene expressions with high-throughput biotechnologies. These gene signatures have in turn been successfully applied to drug development, disease prevention, crop improvement, etc. However, ignoring the interactions among genes has weakened the predictive power of gene signatures in practical applications. Gene regulatory networks, in which genes are represented by nodes and the associations between genes are represented by edges, are typically constructed to analyze and visualize such gene interactions. More specifically, the present study sought to measure gene–gene associations by using the coefficient of intrinsic dependence (CID) to capture more nonlinear as well as cause-effect gene relationships. RESULTS: A stepwise procedure using the CID along with the partial coefficient of intrinsic dependence (pCID) was demonstrated for the rebuilding of simulated networks and the well-known CBF-COR pathway under cold stress using Arabidopsis microarray data. The procedure was also applied to the construction of bHLH gene regulatory pathways under abiotic stresses using rice microarray data, in which OsbHLH104, a putative phytochrome-interacting factor (OsPIF14), and OsbHLH060, a positive regulator of iron homeostasis (OsPRI1) were inferred as the most affiliated genes. The inferred regulatory pathways were verified through literature reviews. CONCLUSIONS: The proposed method can efficiently decipher gene regulatory pathways and may assist in achieving higher predictive power in practical applications. The lack of any mention in the literature of some of the regulatory event may have been due to the high complexity of the regulatory systems in the plant transcription, a possibility which could potentially be confirmed in the near future given ongoing rapid developments in bio-technology. Springer Berlin Heidelberg 2019-09-11 /pmc/articles/PMC6738364/ /pubmed/31512008 http://dx.doi.org/10.1186/s40529-019-0268-8 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Article Liu, Li-yu Daisy Hsiao, Ya-Chun Chen, Hung-Chi Yang, Yun-Wei Chang, Men-Chi Construction of gene causal regulatory networks using microarray data with the coefficient of intrinsic dependence |
title | Construction of gene causal regulatory networks using microarray data with the coefficient of intrinsic dependence |
title_full | Construction of gene causal regulatory networks using microarray data with the coefficient of intrinsic dependence |
title_fullStr | Construction of gene causal regulatory networks using microarray data with the coefficient of intrinsic dependence |
title_full_unstemmed | Construction of gene causal regulatory networks using microarray data with the coefficient of intrinsic dependence |
title_short | Construction of gene causal regulatory networks using microarray data with the coefficient of intrinsic dependence |
title_sort | construction of gene causal regulatory networks using microarray data with the coefficient of intrinsic dependence |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6738364/ https://www.ncbi.nlm.nih.gov/pubmed/31512008 http://dx.doi.org/10.1186/s40529-019-0268-8 |
work_keys_str_mv | AT liuliyudaisy constructionofgenecausalregulatorynetworksusingmicroarraydatawiththecoefficientofintrinsicdependence AT hsiaoyachun constructionofgenecausalregulatorynetworksusingmicroarraydatawiththecoefficientofintrinsicdependence AT chenhungchi constructionofgenecausalregulatorynetworksusingmicroarraydatawiththecoefficientofintrinsicdependence AT yangyunwei constructionofgenecausalregulatorynetworksusingmicroarraydatawiththecoefficientofintrinsicdependence AT changmenchi constructionofgenecausalregulatorynetworksusingmicroarraydatawiththecoefficientofintrinsicdependence |