Cargando…

Improved Optical Property and Lasing of ZnO Nanowires by Ar Plasma Treatment

ZnO nanowires play a very important role in optoelectronic devices due to the wide bandgap and high exciton binding energy. However, for one-dimensional nanowire, due to the large surface to volume ratio, surface traps and surface adsorbed species acts as an alternate pathway for the de-excitation o...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Haolin, Tang, Jilong, Lin, Fengyuan, Wang, Dengkui, Fang, Dan, Fang, Xuan, Liu, Weizhen, Chen, Rui, Wei, Zhipeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6738368/
https://www.ncbi.nlm.nih.gov/pubmed/31512039
http://dx.doi.org/10.1186/s11671-019-3145-1
Descripción
Sumario:ZnO nanowires play a very important role in optoelectronic devices due to the wide bandgap and high exciton binding energy. However, for one-dimensional nanowire, due to the large surface to volume ratio, surface traps and surface adsorbed species acts as an alternate pathway for the de-excitation of carriers. Ar plasma treatment is a useful method to enhance the optical property of ZnO nanowires. It is necessary to study the optical properties of ZnO nanowires treated by plasma with different energies. Here, we used laser spectroscopy to investigate the plasma treatments with various energies on ZnO nanowires. Significantly improved emission has been observed for low and moderate Ar plasma treatments, which can be ascribed to the surface cleaning effects and increased neutral donor-bound excitons. It is worth mentioning that about 60-folds enhancements of the emission at room temperature can be achieved under 200 W Ar plasma treatment. When the plasma energy exceeds the threshold, high-ion beam energy will cause irreparable damage to the ZnO nanowires. Thanks to the enhanced optical performance, random lasing is observed under optical pumping at room temperature. And the stability has been improved dramatically. By using this simple method, the optical property and stability of ZnO nanowires can be effectively enhanced. These results will play an important role in the development of low dimensional ZnO-based optoelectronic devices.