Cargando…
Trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma
Limited studies have focused on developing prognostic models with trans-omics biomarkers for early-stage lung adenocarcinoma (LUAD). We performed integrative analysis of clinical information, DNA methylation, and gene expression data using 825 early-stage LUAD patients from 5 cohorts. Ranger algorit...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6738411/ https://www.ncbi.nlm.nih.gov/pubmed/31434796 http://dx.doi.org/10.18632/aging.102189 |
_version_ | 1783450816221282304 |
---|---|
author | Dong, Xuesi Zhang, Ruyang He, Jieyu Lai, Linjing Alolga, Raphael N. Shen, Sipeng Zhu, Ying You, Dongfang Lin, Lijuan Chen, Chao Zhao, Yang Duan, Weiwei Su, Li Shafer, Andrea Salama, Moran Fleischer, Thomas Bjaanæs, Maria Moksnes Karlsson, Anna Planck, Maria Wang, Rui Staaf, Johan Helland, Åslaug Esteller, Manel Wei, Yongyue Chen, Feng Christiani, David C. |
author_facet | Dong, Xuesi Zhang, Ruyang He, Jieyu Lai, Linjing Alolga, Raphael N. Shen, Sipeng Zhu, Ying You, Dongfang Lin, Lijuan Chen, Chao Zhao, Yang Duan, Weiwei Su, Li Shafer, Andrea Salama, Moran Fleischer, Thomas Bjaanæs, Maria Moksnes Karlsson, Anna Planck, Maria Wang, Rui Staaf, Johan Helland, Åslaug Esteller, Manel Wei, Yongyue Chen, Feng Christiani, David C. |
author_sort | Dong, Xuesi |
collection | PubMed |
description | Limited studies have focused on developing prognostic models with trans-omics biomarkers for early-stage lung adenocarcinoma (LUAD). We performed integrative analysis of clinical information, DNA methylation, and gene expression data using 825 early-stage LUAD patients from 5 cohorts. Ranger algorithm was used to screen prognosis-associated biomarkers, which were confirmed with a validation phase. Clinical and biomarker information was fused using an iCluster plus algorithm, which significantly distinguished patients into high- and low-mortality risk groups (P(discovery) = 0.01 and P(validation) = 2.71×10(-3)). Further, potential functional DNA methylation–gene expression–overall survival pathways were evaluated by causal mediation analysis. The effect of DNA methylation level on LUAD survival was significantly mediated through gene expression level. By adding DNA methylation and gene expression biomarkers to a model of only clinical data, the AUCs of the trans-omics model improved by 18.3% (to 87.2%) and 16.4% (to 85.3%) in discovery and validation phases, respectively. Further, concordance index of the nomogram was 0.81 and 0.77 in discovery and validation phases, respectively. Based on systematic review of published literatures, our model was superior to all existing models for early-stage LUAD. In summary, our trans-omics model may help physicians accurately identify patients with high mortality risk. |
format | Online Article Text |
id | pubmed-6738411 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Impact Journals |
record_format | MEDLINE/PubMed |
spelling | pubmed-67384112019-09-16 Trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma Dong, Xuesi Zhang, Ruyang He, Jieyu Lai, Linjing Alolga, Raphael N. Shen, Sipeng Zhu, Ying You, Dongfang Lin, Lijuan Chen, Chao Zhao, Yang Duan, Weiwei Su, Li Shafer, Andrea Salama, Moran Fleischer, Thomas Bjaanæs, Maria Moksnes Karlsson, Anna Planck, Maria Wang, Rui Staaf, Johan Helland, Åslaug Esteller, Manel Wei, Yongyue Chen, Feng Christiani, David C. Aging (Albany NY) Research Paper Limited studies have focused on developing prognostic models with trans-omics biomarkers for early-stage lung adenocarcinoma (LUAD). We performed integrative analysis of clinical information, DNA methylation, and gene expression data using 825 early-stage LUAD patients from 5 cohorts. Ranger algorithm was used to screen prognosis-associated biomarkers, which were confirmed with a validation phase. Clinical and biomarker information was fused using an iCluster plus algorithm, which significantly distinguished patients into high- and low-mortality risk groups (P(discovery) = 0.01 and P(validation) = 2.71×10(-3)). Further, potential functional DNA methylation–gene expression–overall survival pathways were evaluated by causal mediation analysis. The effect of DNA methylation level on LUAD survival was significantly mediated through gene expression level. By adding DNA methylation and gene expression biomarkers to a model of only clinical data, the AUCs of the trans-omics model improved by 18.3% (to 87.2%) and 16.4% (to 85.3%) in discovery and validation phases, respectively. Further, concordance index of the nomogram was 0.81 and 0.77 in discovery and validation phases, respectively. Based on systematic review of published literatures, our model was superior to all existing models for early-stage LUAD. In summary, our trans-omics model may help physicians accurately identify patients with high mortality risk. Impact Journals 2019-08-21 /pmc/articles/PMC6738411/ /pubmed/31434796 http://dx.doi.org/10.18632/aging.102189 Text en Copyright © 2019 Dong et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 3.0) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Dong, Xuesi Zhang, Ruyang He, Jieyu Lai, Linjing Alolga, Raphael N. Shen, Sipeng Zhu, Ying You, Dongfang Lin, Lijuan Chen, Chao Zhao, Yang Duan, Weiwei Su, Li Shafer, Andrea Salama, Moran Fleischer, Thomas Bjaanæs, Maria Moksnes Karlsson, Anna Planck, Maria Wang, Rui Staaf, Johan Helland, Åslaug Esteller, Manel Wei, Yongyue Chen, Feng Christiani, David C. Trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma |
title | Trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma |
title_full | Trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma |
title_fullStr | Trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma |
title_full_unstemmed | Trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma |
title_short | Trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma |
title_sort | trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6738411/ https://www.ncbi.nlm.nih.gov/pubmed/31434796 http://dx.doi.org/10.18632/aging.102189 |
work_keys_str_mv | AT dongxuesi transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma AT zhangruyang transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma AT hejieyu transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma AT lailinjing transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma AT alolgaraphaeln transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma AT shensipeng transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma AT zhuying transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma AT youdongfang transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma AT linlijuan transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma AT chenchao transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma AT zhaoyang transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma AT duanweiwei transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma AT suli transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma AT shaferandrea transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma AT salamamoran transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma AT fleischerthomas transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma AT bjaanæsmariamoksnes transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma AT karlssonanna transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma AT planckmaria transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma AT wangrui transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma AT staafjohan transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma AT hellandaslaug transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma AT estellermanel transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma AT weiyongyue transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma AT chenfeng transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma AT christianidavidc transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma |