Cargando…

Trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma

Limited studies have focused on developing prognostic models with trans-omics biomarkers for early-stage lung adenocarcinoma (LUAD). We performed integrative analysis of clinical information, DNA methylation, and gene expression data using 825 early-stage LUAD patients from 5 cohorts. Ranger algorit...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Xuesi, Zhang, Ruyang, He, Jieyu, Lai, Linjing, Alolga, Raphael N., Shen, Sipeng, Zhu, Ying, You, Dongfang, Lin, Lijuan, Chen, Chao, Zhao, Yang, Duan, Weiwei, Su, Li, Shafer, Andrea, Salama, Moran, Fleischer, Thomas, Bjaanæs, Maria Moksnes, Karlsson, Anna, Planck, Maria, Wang, Rui, Staaf, Johan, Helland, Åslaug, Esteller, Manel, Wei, Yongyue, Chen, Feng, Christiani, David C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6738411/
https://www.ncbi.nlm.nih.gov/pubmed/31434796
http://dx.doi.org/10.18632/aging.102189
_version_ 1783450816221282304
author Dong, Xuesi
Zhang, Ruyang
He, Jieyu
Lai, Linjing
Alolga, Raphael N.
Shen, Sipeng
Zhu, Ying
You, Dongfang
Lin, Lijuan
Chen, Chao
Zhao, Yang
Duan, Weiwei
Su, Li
Shafer, Andrea
Salama, Moran
Fleischer, Thomas
Bjaanæs, Maria Moksnes
Karlsson, Anna
Planck, Maria
Wang, Rui
Staaf, Johan
Helland, Åslaug
Esteller, Manel
Wei, Yongyue
Chen, Feng
Christiani, David C.
author_facet Dong, Xuesi
Zhang, Ruyang
He, Jieyu
Lai, Linjing
Alolga, Raphael N.
Shen, Sipeng
Zhu, Ying
You, Dongfang
Lin, Lijuan
Chen, Chao
Zhao, Yang
Duan, Weiwei
Su, Li
Shafer, Andrea
Salama, Moran
Fleischer, Thomas
Bjaanæs, Maria Moksnes
Karlsson, Anna
Planck, Maria
Wang, Rui
Staaf, Johan
Helland, Åslaug
Esteller, Manel
Wei, Yongyue
Chen, Feng
Christiani, David C.
author_sort Dong, Xuesi
collection PubMed
description Limited studies have focused on developing prognostic models with trans-omics biomarkers for early-stage lung adenocarcinoma (LUAD). We performed integrative analysis of clinical information, DNA methylation, and gene expression data using 825 early-stage LUAD patients from 5 cohorts. Ranger algorithm was used to screen prognosis-associated biomarkers, which were confirmed with a validation phase. Clinical and biomarker information was fused using an iCluster plus algorithm, which significantly distinguished patients into high- and low-mortality risk groups (P(discovery) = 0.01 and P(validation) = 2.71×10(-3)). Further, potential functional DNA methylation–gene expression–overall survival pathways were evaluated by causal mediation analysis. The effect of DNA methylation level on LUAD survival was significantly mediated through gene expression level. By adding DNA methylation and gene expression biomarkers to a model of only clinical data, the AUCs of the trans-omics model improved by 18.3% (to 87.2%) and 16.4% (to 85.3%) in discovery and validation phases, respectively. Further, concordance index of the nomogram was 0.81 and 0.77 in discovery and validation phases, respectively. Based on systematic review of published literatures, our model was superior to all existing models for early-stage LUAD. In summary, our trans-omics model may help physicians accurately identify patients with high mortality risk.
format Online
Article
Text
id pubmed-6738411
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Impact Journals
record_format MEDLINE/PubMed
spelling pubmed-67384112019-09-16 Trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma Dong, Xuesi Zhang, Ruyang He, Jieyu Lai, Linjing Alolga, Raphael N. Shen, Sipeng Zhu, Ying You, Dongfang Lin, Lijuan Chen, Chao Zhao, Yang Duan, Weiwei Su, Li Shafer, Andrea Salama, Moran Fleischer, Thomas Bjaanæs, Maria Moksnes Karlsson, Anna Planck, Maria Wang, Rui Staaf, Johan Helland, Åslaug Esteller, Manel Wei, Yongyue Chen, Feng Christiani, David C. Aging (Albany NY) Research Paper Limited studies have focused on developing prognostic models with trans-omics biomarkers for early-stage lung adenocarcinoma (LUAD). We performed integrative analysis of clinical information, DNA methylation, and gene expression data using 825 early-stage LUAD patients from 5 cohorts. Ranger algorithm was used to screen prognosis-associated biomarkers, which were confirmed with a validation phase. Clinical and biomarker information was fused using an iCluster plus algorithm, which significantly distinguished patients into high- and low-mortality risk groups (P(discovery) = 0.01 and P(validation) = 2.71×10(-3)). Further, potential functional DNA methylation–gene expression–overall survival pathways were evaluated by causal mediation analysis. The effect of DNA methylation level on LUAD survival was significantly mediated through gene expression level. By adding DNA methylation and gene expression biomarkers to a model of only clinical data, the AUCs of the trans-omics model improved by 18.3% (to 87.2%) and 16.4% (to 85.3%) in discovery and validation phases, respectively. Further, concordance index of the nomogram was 0.81 and 0.77 in discovery and validation phases, respectively. Based on systematic review of published literatures, our model was superior to all existing models for early-stage LUAD. In summary, our trans-omics model may help physicians accurately identify patients with high mortality risk. Impact Journals 2019-08-21 /pmc/articles/PMC6738411/ /pubmed/31434796 http://dx.doi.org/10.18632/aging.102189 Text en Copyright © 2019 Dong et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 3.0) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Paper
Dong, Xuesi
Zhang, Ruyang
He, Jieyu
Lai, Linjing
Alolga, Raphael N.
Shen, Sipeng
Zhu, Ying
You, Dongfang
Lin, Lijuan
Chen, Chao
Zhao, Yang
Duan, Weiwei
Su, Li
Shafer, Andrea
Salama, Moran
Fleischer, Thomas
Bjaanæs, Maria Moksnes
Karlsson, Anna
Planck, Maria
Wang, Rui
Staaf, Johan
Helland, Åslaug
Esteller, Manel
Wei, Yongyue
Chen, Feng
Christiani, David C.
Trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma
title Trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma
title_full Trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma
title_fullStr Trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma
title_full_unstemmed Trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma
title_short Trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma
title_sort trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6738411/
https://www.ncbi.nlm.nih.gov/pubmed/31434796
http://dx.doi.org/10.18632/aging.102189
work_keys_str_mv AT dongxuesi transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma
AT zhangruyang transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma
AT hejieyu transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma
AT lailinjing transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma
AT alolgaraphaeln transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma
AT shensipeng transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma
AT zhuying transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma
AT youdongfang transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma
AT linlijuan transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma
AT chenchao transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma
AT zhaoyang transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma
AT duanweiwei transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma
AT suli transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma
AT shaferandrea transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma
AT salamamoran transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma
AT fleischerthomas transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma
AT bjaanæsmariamoksnes transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma
AT karlssonanna transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma
AT planckmaria transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma
AT wangrui transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma
AT staafjohan transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma
AT hellandaslaug transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma
AT estellermanel transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma
AT weiyongyue transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma
AT chenfeng transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma
AT christianidavidc transomicsbiomarkermodelimprovesprognosticpredictionaccuracyforearlystagelungadenocarcinoma