Cargando…
ViraMiner: Deep learning on raw DNA sequences for identifying viral genomes in human samples
Despite its clinical importance, detection of highly divergent or yet unknown viruses is a major challenge. When human samples are sequenced, conventional alignments classify many assembled contigs as “unknown” since many of the sequences are not similar to known genomes. In this work, we developed...
Autores principales: | Tampuu, Ardi, Bzhalava, Zurab, Dillner, Joakim, Vicente, Raul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6738585/ https://www.ncbi.nlm.nih.gov/pubmed/31509583 http://dx.doi.org/10.1371/journal.pone.0222271 |
Ejemplares similares
-
Machine Learning for detection of viral sequences in human metagenomic datasets
por: Bzhalava, Zurab, et al.
Publicado: (2018) -
Extension of the viral ecology in humans using viral profile hidden Markov models
por: Bzhalava, Zurab, et al.
Publicado: (2018) -
Perspective Taking in Deep Reinforcement Learning Agents
por: Labash, Aqeel, et al.
Publicado: (2020) -
Efficient neural decoding of self-location with a deep recurrent network
por: Tampuu, Ardi, et al.
Publicado: (2019) -
Viruses in case series of tumors: Consistent presence in different cancers in the same subject
por: Arroyo Mühr, Laila Sara, et al.
Publicado: (2017)