Cargando…
Empirical mode decomposition based long short-term memory neural network forecasting model for the short-term metro passenger flow
Short-term metro passenger flow forecasting is an essential component of intelligent transportation systems (ITS) and can be applied to optimize the passenger flow organization of a station and offer data support for metro passenger flow early warning and system management. LSTM neural networks have...
Autores principales: | Chen, Quanchao, Wen, Di, Li, Xuqiang, Chen, Dingjun, Lv, Hongxia, Zhang, Jie, Gao, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6738919/ https://www.ncbi.nlm.nih.gov/pubmed/31509599 http://dx.doi.org/10.1371/journal.pone.0222365 |
Ejemplares similares
-
Correction: Empirical mode decomposition based long short-term memory neural network forecasting model for the short-term metro passenger flow
por: Chen, Quanchao, et al.
Publicado: (2020) -
Ensemble streamflow forecasting based on variational mode decomposition and long short term memory
por: Sun, Xiaomei, et al.
Publicado: (2022) -
Artificial Neural Networks for Forecasting Passenger Flows on Metro Lines
por: Gallo, Mariano, et al.
Publicado: (2019) -
Forecasting the Short-Term Passenger Flow on High-Speed Railway with Neural Networks
por: Xie, Mei-Quan, et al.
Publicado: (2014) -
Prediction of Time-Series Transcriptomic Gene Expression Based on Long Short-Term Memory with Empirical Mode Decomposition
por: Zhou, Ying, et al.
Publicado: (2022)