Cargando…
Fluidized landslides triggered by the liquefaction of subsurface volcanic deposits during the 2018 Iburi–Tobu earthquake, Hokkaido
The 6.6 M(w) Iburi–Tobu earthquake struck southern Hokkaido, Japan on 6 September 2018. The earthquake triggered widespread slope collapses in the hills near the epicenter, resulting in destructive landslides that killed 36 people. Volcanic deposits covering the region slid downhill in a flow-like m...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739409/ https://www.ncbi.nlm.nih.gov/pubmed/31511623 http://dx.doi.org/10.1038/s41598-019-48820-y |
Sumario: | The 6.6 M(w) Iburi–Tobu earthquake struck southern Hokkaido, Japan on 6 September 2018. The earthquake triggered widespread slope collapses in the hills near the epicenter, resulting in destructive landslides that killed 36 people. Volcanic deposits covering the region slid downhill in a flow-like manner suggestive of fluidized landslides. Here, we report a distinctive example of liquefaction in the field, which could be a prerequisite for the generation of fluidized landslides triggered by large earthquakes. In the scarp of a typical landslide, an altered halloysite-bearing volcanic layer is observed at a level almost coincident with the sliding surface. The layer is intensely undulating and can be divided into an upper clay-rich layer and a lower pumice-rich layer, suggesting that the altered layer had liquefied as a result of the strong coseismic ground motion. The layer had been soaked by heavy rainfall just one day before the earthquake and could have liquefied, producing a weak and slippery plane, resulting in the catastrophic landslides in this area. |
---|