Cargando…
Visible light induced alkene aminopyridylation using N-aminopyridinium salts as bifunctional reagents
The development of intermolecular alkene aminopyridylation has great potential for quickly increasing molecular complexity with two valuable groups. Here we report a strategy for the photocatalytic aminopyridylation of alkenes using a variety of N-aminopyridinium salts as both aminating and pyridyla...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739411/ https://www.ncbi.nlm.nih.gov/pubmed/31511595 http://dx.doi.org/10.1038/s41467-019-12216-3 |
Sumario: | The development of intermolecular alkene aminopyridylation has great potential for quickly increasing molecular complexity with two valuable groups. Here we report a strategy for the photocatalytic aminopyridylation of alkenes using a variety of N-aminopyridinium salts as both aminating and pyridylating reagents. Using Eosin Y as a photocatalyst, amino and pyridyl groups are simultaneously incorporated into alkenes, affording synthetically useful aminoethyl pyridine derivatives under mild reaction conditions. Remarkably, the C4-regioselectivity in radical trapping with N-aminopyridinium salt can be controlled by electrostatic interaction between the pyridinium nitrogen and sulfonyl group of β-amino radical. This transformation is characterized by a broad substrate scope, good functional group compatibility, and the utility of this transformation was further demonstrated by late-stage functionalization of complex biorelevant molecules. Combining experiments and DFT calculations on the mechanism of the reaction is investigated to propose a complete mechanism and regioselectivity. |
---|