Cargando…

Identification of transcriptome-wide, nut weight-associated SNPs in Castanea crenata

Nut weight is one of the most important traits that can affect a chestnut grower’s returns. Due to the long juvenile phase of chestnut trees, the selection of desired characteristics at early developmental stages represents a major challenge for chestnut breeding. In this study, we identified single...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Min-Jeong, Shin, Ah-Young, Shin, Younhee, Lee, Sang-A, Lee, Hyo-Ryeon, Kim, Tae-Dong, Choi, Mina, Koo, Namjin, Kim, Yong-Min, Kyeong, Dongsoo, Subramaniyam, Sathiyamoorthy, Park, Eung-Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739505/
https://www.ncbi.nlm.nih.gov/pubmed/31511588
http://dx.doi.org/10.1038/s41598-019-49618-8
Descripción
Sumario:Nut weight is one of the most important traits that can affect a chestnut grower’s returns. Due to the long juvenile phase of chestnut trees, the selection of desired characteristics at early developmental stages represents a major challenge for chestnut breeding. In this study, we identified single nucleotide polymorphisms (SNPs) in transcriptomic regions, which were significantly associated with nut weight in chestnuts (Castanea crenata), using a genome-wide association study (GWAS). RNA-sequencing (RNA-seq) data were generated from large and small nut-bearing trees, using an Illumina HiSeq. 2000 system, and 3,271,142 SNPs were identified. A total of 21 putative SNPs were significantly associated with chestnut weight (false discovery rate [FDR] < 10(−5)), based on further analyses. We also applied five machine learning (ML) algorithms, support vector machine (SVM), C5.0, k-nearest neighbour (k-NN), partial least squares (PLS), and random forest (RF), using the 21 SNPs to predict the nut weights of a second population. The average accuracy of the ML algorithms for the prediction of chestnut weights was greater than 68%. Taken together, we suggest that these SNPs have the potential to be used during marker-assisted selection to facilitate the breeding of large chestnut-bearing varieties.