Cargando…
Augmenting biologging with supervised machine learning to study in situ behavior of the medusa Chrysaora fuscescens
Zooplankton play critical roles in marine ecosystems, yet their fine-scale behavior remains poorly understood because of the difficulty in studying individuals in situ. Here, we combine biologging with supervised machine learning (ML) to propose a pipeline for studying in situ behavior of larger zoo...
Autores principales: | Fannjiang, Clara, Mooney, T. Aran, Cones, Seth, Mann, David, Shorter, K. Alex, Katija, Kakani |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739807/ https://www.ncbi.nlm.nih.gov/pubmed/31371399 http://dx.doi.org/10.1242/jeb.207654 |
Ejemplares similares
-
Tentacle Transcriptome and Venom Proteome of the Pacific Sea Nettle, Chrysaora fuscescens (Cnidaria: Scyphozoa)
por: Ponce, Dalia, et al.
Publicado: (2016) -
High-continuity genome assembly of the jellyfish Chrysaora quinquecirrha
por: Xia, Wang-Xiao, et al.
Publicado: (2021) -
Caput medusae
por: Sharma, Brij, et al.
Publicado: (2015) -
Medusas : una historia natural /
por: Gershwin, Lisa Ann
Publicado: (2021) -
Medusa y cia /
por: Caillois, Roger, 1913-1978
Publicado: (1960)