Cargando…

Azide-Based High-Energy Metal–Organic Frameworks with Enhanced Thermal Stability

[Image: see text] We describe the structure and properties of [Zn(C(6)H(4)N(5))N(3)](n), a new nonporous three-dimensional high-energy metal–organic framework (HE-MOF) with enhanced thermal stability. The compound is synthesized by the hydrothermal method with in situ ligand formation under controll...

Descripción completa

Detalles Bibliográficos
Autores principales: Chi-Durán, Ignacio, Enríquez, Javier, Manquián, Carolina, Fritz, Rubén Alejandro, Vega, Andrés, Serafini, Daniel, Herrera, Felipe, Singh, Dinesh Pratap
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6740183/
https://www.ncbi.nlm.nih.gov/pubmed/31528792
http://dx.doi.org/10.1021/acsomega.9b01127
Descripción
Sumario:[Image: see text] We describe the structure and properties of [Zn(C(6)H(4)N(5))N(3)](n), a new nonporous three-dimensional high-energy metal–organic framework (HE-MOF) with enhanced thermal stability. The compound is synthesized by the hydrothermal method with in situ ligand formation under controlled pH and characterized using single-crystal X-ray diffraction, elemental analysis, and Fourier transform infrared. The measured detonation temperature (T(det) = 345 °C) and heat of detonation (ΔH(det) = −0.380 kcal/g) compare well with commercial explosives and other nitrogen-rich HE-MOFs. The velocity and pressure of denotation are 5.96 km/s and 9.56 GPa, respectively. Differential scanning calorimetry analysis shows that the denotation of [Zn(C(6)H(4)N(5))N(3)](n) occurs via a complex temperature-dependent mechanism.