Cargando…
An artificial intelligent diagnostic system on mobile Android terminals for cholelithiasis by lightweight convolutional neural network
Artificial intelligence (AI) tools have been applied to diagnose or predict disease risk from medical images with recent data disclosure actions, but few of them are designed for mobile terminals due to the limited computational power and storage capacity of mobile devices. In this work, a novel AI...
Autores principales: | Pang, Shanchen, Wang, Shuo, Rodríguez-Patón, Alfonso, Li, Pibao, Wang, Xun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6742400/ https://www.ncbi.nlm.nih.gov/pubmed/31513631 http://dx.doi.org/10.1371/journal.pone.0221720 |
Ejemplares similares
-
A novel YOLOv3-arch model for identifying cholelithiasis and classifying gallstones on CT images
por: Pang, Shanchen, et al.
Publicado: (2019) -
Artificial Intelligence Algorithms for Malware Detection in Android-Operated Mobile Devices
por: Alkahtani, Hasan, et al.
Publicado: (2022) -
Android dreams: the past, present and future of artificial intelligence
por: Walsh, Toby
Publicado: (2017) -
A Lightweight Sentiment Analysis Framework for a Micro-Intelligent Terminal
por: Wei, Lin, et al.
Publicado: (2023) -
Research and Verification of Convolutional Neural Network Lightweight in BCI
por: Xu, Shipu, et al.
Publicado: (2020)