Cargando…
Fast uncertainty quantification for dynamic flux balance analysis using non-smooth polynomial chaos expansions
We present a novel surrogate modeling method that can be used to accelerate the solution of uncertainty quantification (UQ) problems arising in nonlinear and non-smooth models of biological systems. In particular, we focus on dynamic flux balance analysis (DFBA) models that couple intracellular flux...
Autores principales: | Paulson, Joel A., Martin-Casas, Marc, Mesbah, Ali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6742419/ https://www.ncbi.nlm.nih.gov/pubmed/31469832 http://dx.doi.org/10.1371/journal.pcbi.1007308 |
Ejemplares similares
-
Uncertainty Quantification in Simulations of Epidemics Using Polynomial Chaos
por: Santonja, F., et al.
Publicado: (2012) -
Uncertainty quantification of multi-scale resilience in networked systems with nonlinear dynamics using arbitrary polynomial chaos
por: Zou, Mengbang, et al.
Publicado: (2023) -
Quantification of Geometric Uncertainties in Single Cell Cavities for BESSY VSR Using Polynomial Chaos
por: Heller, J, et al.
Publicado: (2014) -
Polynomial chaos methods for hyperbolic partial differential equations: numerical techniques for fluid dynamics problems in the presence of uncertainties
por: Pettersson, Mass Per, et al.
Publicado: (2015) -
Global Reliability Sensitivity Analysis Based on Maximum Entropy and 2-Layer Polynomial Chaos Expansion
por: Zhao, Jianyu, et al.
Publicado: (2018)