Cargando…
Weakly-supervised convolutional neural networks for multimodal image registration
One of the fundamental challenges in supervised learning for multimodal image registration is the lack of ground-truth for voxel-level spatial correspondence. This work describes a method to infer voxel-level transformation from higher-level correspondence information contained in anatomical labels....
Autores principales: | Hu, Yipeng, Modat, Marc, Gibson, Eli, Li, Wenqi, Ghavami, Nooshin, Bonmati, Ester, Wang, Guotai, Bandula, Steven, Moore, Caroline M., Emberton, Mark, Ourselin, Sébastien, Noble, J. Alison, Barratt, Dean C., Vercauteren, Tom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6742510/ https://www.ncbi.nlm.nih.gov/pubmed/30007253 http://dx.doi.org/10.1016/j.media.2018.07.002 |
Ejemplares similares
-
Automatic segmentation of prostate MRI using convolutional neural networks: Investigating the impact of network architecture on the accuracy of volume measurement and MRI-ultrasound registration
por: Ghavami, Nooshin, et al.
Publicado: (2019) -
Integration of spatial information in convolutional neural networks for automatic segmentation of intraoperative transrectal ultrasound images
por: Ghavami, Nooshin, et al.
Publicado: (2018) -
Automatic Brain Tumor Segmentation Based on Cascaded Convolutional Neural Networks With Uncertainty Estimation
por: Wang, Guotai, et al.
Publicado: (2019) -
Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks
por: Wang, Guotai, et al.
Publicado: (2019) -
Population-based prediction of subject-specific prostate deformation for MR-to-ultrasound image registration
por: Hu, Yipeng, et al.
Publicado: (2015)