Cargando…
SKF-LDA: Similarity Kernel Fusion for Predicting lncRNA-Disease Association
Recently, prediction of lncRNA-disease associations has attracted more and more attentions. Various computational models have been proposed; however, there is still room to improve the prediction accuracy. In this paper, we propose a kernel fusion method with different types of similarities for the...
Autores principales: | Xie, Guobo, Meng, Tengfei, Luo, Yu, Liu, Zhenguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6742806/ https://www.ncbi.nlm.nih.gov/pubmed/31514111 http://dx.doi.org/10.1016/j.omtn.2019.07.022 |
Ejemplares similares
-
LPI-SKF: Predicting lncRNA-Protein Interactions Using Similarity Kernel Fusions
por: Zhou, Yuan-Ke, et al.
Publicado: (2020) -
DDA-SKF: Predicting Drug–Disease Associations Using Similarity Kernel Fusion
por: Gao, Chu-Qiao, et al.
Publicado: (2022) -
MDA-SKF: Similarity Kernel Fusion for Accurately Discovering miRNA-Disease Association
por: Jiang, Limin, et al.
Publicado: (2018) -
Multivariate Information Fusion With Fast Kernel Learning to Kernel Ridge Regression in Predicting LncRNA-Protein Interactions
por: Shen, Cong, et al.
Publicado: (2019) -
DNILMF-LDA: Prediction of lncRNA-Disease Associations by Dual-Network Integrated Logistic Matrix Factorization and Bayesian Optimization
por: Li, Yan, et al.
Publicado: (2019)