Cargando…

Patient-specific 3D printed and augmented reality kidney and prostate cancer models: impact on patient education

BACKGROUND: Patient-specific 3D models are being used increasingly in medicine for many applications including surgical planning, procedure rehearsal, trainee education, and patient education. To date, experiences on the use of 3D models to facilitate patient understanding of their disease and surgi...

Descripción completa

Detalles Bibliográficos
Autores principales: Wake, Nicole, Rosenkrantz, Andrew B., Huang, Richard, Park, Katalina U., Wysock, James S., Taneja, Samir S., Huang, William C., Sodickson, Daniel K., Chandarana, Hersh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6743040/
https://www.ncbi.nlm.nih.gov/pubmed/30783869
http://dx.doi.org/10.1186/s41205-019-0041-3
Descripción
Sumario:BACKGROUND: Patient-specific 3D models are being used increasingly in medicine for many applications including surgical planning, procedure rehearsal, trainee education, and patient education. To date, experiences on the use of 3D models to facilitate patient understanding of their disease and surgical plan are limited. The purpose of this study was to investigate in the context of renal and prostate cancer the impact of using 3D printed and augmented reality models for patient education. METHODS: Patients with MRI-visible prostate cancer undergoing either robotic assisted radical prostatectomy or focal ablative therapy or patients with renal masses undergoing partial nephrectomy were prospectively enrolled in this IRB approved study (n = 200). Patients underwent routine clinical imaging protocols and were randomized to receive pre-operative planning with imaging alone or imaging plus a patient-specific 3D model which was either 3D printed, visualized in AR, or viewed in 3D on a 2D computer monitor. 3D uro-oncologic models were created from the medical imaging data. A 5-point Likert scale survey was administered to patients prior to the surgical procedure to determine understanding of the cancer and treatment plan. If randomized to receive a pre-operative 3D model, the survey was completed twice, before and after viewing the 3D model. In addition, the cohort that received 3D models completed additional questions to compare usefulness of the different forms of visualization of the 3D models. Survey responses for each of the 3D model groups were compared using the Mann-Whitney and Wilcoxan rank-sum tests. RESULTS: All 200 patients completed the survey after reviewing their cases with their surgeons using imaging only. 127 patients completed the 5-point Likert scale survey regarding understanding of disease and surgical procedure twice, once with imaging and again after reviewing imaging plus a 3D model. Patients had a greater understanding using 3D printed models versus imaging for all measures including comprehension of disease, cancer size, cancer location, treatment plan, and the comfort level regarding the treatment plan (range 4.60–4.78/5 vs. 4.06–4.49/5, p < 0.05). CONCLUSIONS: All types of patient-specific 3D models were reported to be valuable for patient education. Out of the three advanced imaging methods, the 3D printed models helped patients to have the greatest understanding of their anatomy, disease, tumor characteristics, and surgical procedure.