Cargando…

Intermobility of barium, strontium, and lead in chloride and sulfate leach solutions

Production of radionuclide-free copper concentrates is dependent on understanding and controlling the deportment of daughter radionuclides (RNs) produced from (238)U decay, specifically (226)Ra, (210)Pb, and (210)Po. Sulfuric acid leaching is currently employed in the Olympic Dam processing plant (S...

Descripción completa

Detalles Bibliográficos
Autores principales: Rollog, Mark, Cook, Nigel J., Guagliardo, Paul, Ehrig, Kathy, Gilbert, Sarah E., Kilburn, Matt
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6743140/
https://www.ncbi.nlm.nih.gov/pubmed/31486989
http://dx.doi.org/10.1186/s12932-019-0064-0
Descripción
Sumario:Production of radionuclide-free copper concentrates is dependent on understanding and controlling the deportment of daughter radionuclides (RNs) produced from (238)U decay, specifically (226)Ra, (210)Pb, and (210)Po. Sulfuric acid leaching is currently employed in the Olympic Dam processing plant (South Australia) to remove U and fluorine from copper concentrates prior to smelting but does not adequately remove the aforementioned RN. Due to chemical similarities between lead and alkaline earth metals (including Ra), two sets of experiments were designed to understand solution interactions between Sr, Ba, and Pb at various conditions. Nanoscale secondary ion mass spectrometry (NanoSIMS) isotopic spatial distribution maps and laser ablation inductively coupled-plasma mass spectrometry transects were performed on laboratory-grown crystals of baryte, celestite, and anglesite which had been exposed to different solutions under different pH and reaction time conditions. Analysis of experimental products reveals three uptake mechanisms: overgrowth of nearly pure SrSO(4) and PbSO(4) on baryte; incorporation of minor of Pb and Ba into celestite due to diffusion; and extensive replacement of Pb by Sr (and less extensive replacement of Pb by Ba) in anglesite via coupled dissolution-reprecipitation reactions. The presence of H(2)SO(4) either enhanced or inhibited these reactions. Kinetic modelling supports the experimental results, showing potential for extrapolating the (Sr, Ba, Pb)SO(4) system to encompass RaSO(4). Direct observation of grain-scale element distributions by nanoSIMS aids understanding of the controlling conditions and mechanisms of replacement that may be critical steps for Pb and Ra removal from concentrates by allowing construction of a cationic replacement scenario targeting Pb or Ra, or ideally all insoluble sulfates. Experimental results provide a foundation for further investigation of RN uptake during minerals processing, especially during acid leaching. The new evidence enhances understanding of micro- to nanoscale chemical interactions and not only aids determination of where radionuclides reside during each processing stage but also guides development of flowsheets targeting their removal.