Cargando…

Central-spindle microtubules are strongly coupled to chromosomes during both anaphase A and anaphase B

Spindle microtubules, whose dynamics vary over time and at different locations, cooperatively drive chromosome segregation. Measurements of microtubule dynamics and spindle ultrastructure can provide insight into the behaviors of microtubules, helping elucidate the mechanism of chromosome segregatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Che-Hang, Redemann, Stefanie, Wu, Hai-Yin, Kiewisz, Robert, Yoo, Tae Yeon, Conway, William, Farhadifar, Reza, Müller-Reichert, Thomas, Needleman, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6743361/
https://www.ncbi.nlm.nih.gov/pubmed/31339442
http://dx.doi.org/10.1091/mbc.E19-01-0074
Descripción
Sumario:Spindle microtubules, whose dynamics vary over time and at different locations, cooperatively drive chromosome segregation. Measurements of microtubule dynamics and spindle ultrastructure can provide insight into the behaviors of microtubules, helping elucidate the mechanism of chromosome segregation. Much work has focused on the dynamics and organization of kinetochore microtubules, that is, on the region between chromosomes and poles. In comparison, microtubules in the central-spindle region, between segregating chromosomes, have been less thoroughly characterized. Here, we report measurements of the movement of central-spindle microtubules during chromosome segregation in human mitotic spindles and Caenorhabditis elegans mitotic and female meiotic spindles. We found that these central-spindle microtubules slide apart at the same speed as chromosomes, even as chromosomes move toward spindle poles. In these systems, damaging central-spindle microtubules by laser ablation caused an immediate and complete cessation of chromosome motion, suggesting a strong coupling between central-spindle microtubules and chromosomes. Electron tomographic reconstruction revealed that the analyzed anaphase spindles all contain microtubules with both ends between segregating chromosomes. Our results provide new dynamical, functional, and ultrastructural characterizations of central-spindle microtubules during chromosome segregation in diverse spindles and suggest that central-spindle microtubules and chromosomes are strongly coupled in anaphase.