Cargando…
Hardness Recognition of Robotic Forearm Based on Semi-supervised Generative Adversarial Networks
The hardness recognition is of great significance to tactile sensing and robotic control. The hardness recognition methods based on deep learning have demonstrated a good performance, however, a huge amount of manually labeled samples which require lots of time and labor costs are necessary for the...
Autores principales: | Qian, Xiaoliang, Li, Erkai, Zhang, Jianwei, Zhao, Su-Na, Wu, Qing-E, Zhang, Huanlong, Wang, Wei, Wu, Yuanyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6743412/ https://www.ncbi.nlm.nih.gov/pubmed/31551748 http://dx.doi.org/10.3389/fnbot.2019.00073 |
Ejemplares similares
-
Semi-Supervised Generative Adversarial Nets with Multiple Generators for SAR Image Recognition
por: Gao, Fei, et al.
Publicado: (2018) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
Generative Adversarial Networks-Based Semi-Supervised Automatic Modulation Recognition for Cognitive Radio Networks
por: Li, Mingxuan, et al.
Publicado: (2018) -
Semi-Supervised Adversarial Learning Using LSTM for Human Activity Recognition
por: Yang, Sung-Hyun, et al.
Publicado: (2022) -
Semi-Supervised Adversarial Auto-Encoder to Expedite Human Activity Recognition
por: Thapa, Keshav, et al.
Publicado: (2023)