Cargando…

Uniqueness of codes using semidefinite programming

For [Formula: see text] , let A(n, d, w) denote the maximum size of a binary code of word length n, minimum distance d and constant weight w. Schrijver recently showed using semidefinite programming that [Formula: see text] , and the second author that [Formula: see text] and [Formula: see text] . H...

Descripción completa

Detalles Bibliográficos
Autores principales: Brouwer, Andries E., Polak, Sven C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6743705/
https://www.ncbi.nlm.nih.gov/pubmed/31564772
http://dx.doi.org/10.1007/s10623-018-0589-8
Descripción
Sumario:For [Formula: see text] , let A(n, d, w) denote the maximum size of a binary code of word length n, minimum distance d and constant weight w. Schrijver recently showed using semidefinite programming that [Formula: see text] , and the second author that [Formula: see text] and [Formula: see text] . Here we show uniqueness of the codes achieving these bounds. Let A(n, d) denote the maximum size of a binary code of word length n and minimum distance d. Gijswijt et al. showed that [Formula: see text] . We show that there are several nonisomorphic codes achieving this bound, and classify all such codes with all distances divisible by 4.