Cargando…
Uniqueness of codes using semidefinite programming
For [Formula: see text] , let A(n, d, w) denote the maximum size of a binary code of word length n, minimum distance d and constant weight w. Schrijver recently showed using semidefinite programming that [Formula: see text] , and the second author that [Formula: see text] and [Formula: see text] . H...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6743705/ https://www.ncbi.nlm.nih.gov/pubmed/31564772 http://dx.doi.org/10.1007/s10623-018-0589-8 |
Sumario: | For [Formula: see text] , let A(n, d, w) denote the maximum size of a binary code of word length n, minimum distance d and constant weight w. Schrijver recently showed using semidefinite programming that [Formula: see text] , and the second author that [Formula: see text] and [Formula: see text] . Here we show uniqueness of the codes achieving these bounds. Let A(n, d) denote the maximum size of a binary code of word length n and minimum distance d. Gijswijt et al. showed that [Formula: see text] . We show that there are several nonisomorphic codes achieving this bound, and classify all such codes with all distances divisible by 4. |
---|