Cargando…

Uniqueness of codes using semidefinite programming

For [Formula: see text] , let A(n, d, w) denote the maximum size of a binary code of word length n, minimum distance d and constant weight w. Schrijver recently showed using semidefinite programming that [Formula: see text] , and the second author that [Formula: see text] and [Formula: see text] . H...

Descripción completa

Detalles Bibliográficos
Autores principales: Brouwer, Andries E., Polak, Sven C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6743705/
https://www.ncbi.nlm.nih.gov/pubmed/31564772
http://dx.doi.org/10.1007/s10623-018-0589-8
_version_ 1783451315611893760
author Brouwer, Andries E.
Polak, Sven C.
author_facet Brouwer, Andries E.
Polak, Sven C.
author_sort Brouwer, Andries E.
collection PubMed
description For [Formula: see text] , let A(n, d, w) denote the maximum size of a binary code of word length n, minimum distance d and constant weight w. Schrijver recently showed using semidefinite programming that [Formula: see text] , and the second author that [Formula: see text] and [Formula: see text] . Here we show uniqueness of the codes achieving these bounds. Let A(n, d) denote the maximum size of a binary code of word length n and minimum distance d. Gijswijt et al. showed that [Formula: see text] . We show that there are several nonisomorphic codes achieving this bound, and classify all such codes with all distances divisible by 4.
format Online
Article
Text
id pubmed-6743705
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-67437052019-09-27 Uniqueness of codes using semidefinite programming Brouwer, Andries E. Polak, Sven C. Des Codes Cryptogr Article For [Formula: see text] , let A(n, d, w) denote the maximum size of a binary code of word length n, minimum distance d and constant weight w. Schrijver recently showed using semidefinite programming that [Formula: see text] , and the second author that [Formula: see text] and [Formula: see text] . Here we show uniqueness of the codes achieving these bounds. Let A(n, d) denote the maximum size of a binary code of word length n and minimum distance d. Gijswijt et al. showed that [Formula: see text] . We show that there are several nonisomorphic codes achieving this bound, and classify all such codes with all distances divisible by 4. Springer US 2018-11-30 2019 /pmc/articles/PMC6743705/ /pubmed/31564772 http://dx.doi.org/10.1007/s10623-018-0589-8 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
Brouwer, Andries E.
Polak, Sven C.
Uniqueness of codes using semidefinite programming
title Uniqueness of codes using semidefinite programming
title_full Uniqueness of codes using semidefinite programming
title_fullStr Uniqueness of codes using semidefinite programming
title_full_unstemmed Uniqueness of codes using semidefinite programming
title_short Uniqueness of codes using semidefinite programming
title_sort uniqueness of codes using semidefinite programming
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6743705/
https://www.ncbi.nlm.nih.gov/pubmed/31564772
http://dx.doi.org/10.1007/s10623-018-0589-8
work_keys_str_mv AT brouwerandriese uniquenessofcodesusingsemidefiniteprogramming
AT polaksvenc uniquenessofcodesusingsemidefiniteprogramming