Cargando…
Uniqueness of codes using semidefinite programming
For [Formula: see text] , let A(n, d, w) denote the maximum size of a binary code of word length n, minimum distance d and constant weight w. Schrijver recently showed using semidefinite programming that [Formula: see text] , and the second author that [Formula: see text] and [Formula: see text] . H...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6743705/ https://www.ncbi.nlm.nih.gov/pubmed/31564772 http://dx.doi.org/10.1007/s10623-018-0589-8 |
_version_ | 1783451315611893760 |
---|---|
author | Brouwer, Andries E. Polak, Sven C. |
author_facet | Brouwer, Andries E. Polak, Sven C. |
author_sort | Brouwer, Andries E. |
collection | PubMed |
description | For [Formula: see text] , let A(n, d, w) denote the maximum size of a binary code of word length n, minimum distance d and constant weight w. Schrijver recently showed using semidefinite programming that [Formula: see text] , and the second author that [Formula: see text] and [Formula: see text] . Here we show uniqueness of the codes achieving these bounds. Let A(n, d) denote the maximum size of a binary code of word length n and minimum distance d. Gijswijt et al. showed that [Formula: see text] . We show that there are several nonisomorphic codes achieving this bound, and classify all such codes with all distances divisible by 4. |
format | Online Article Text |
id | pubmed-6743705 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-67437052019-09-27 Uniqueness of codes using semidefinite programming Brouwer, Andries E. Polak, Sven C. Des Codes Cryptogr Article For [Formula: see text] , let A(n, d, w) denote the maximum size of a binary code of word length n, minimum distance d and constant weight w. Schrijver recently showed using semidefinite programming that [Formula: see text] , and the second author that [Formula: see text] and [Formula: see text] . Here we show uniqueness of the codes achieving these bounds. Let A(n, d) denote the maximum size of a binary code of word length n and minimum distance d. Gijswijt et al. showed that [Formula: see text] . We show that there are several nonisomorphic codes achieving this bound, and classify all such codes with all distances divisible by 4. Springer US 2018-11-30 2019 /pmc/articles/PMC6743705/ /pubmed/31564772 http://dx.doi.org/10.1007/s10623-018-0589-8 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Article Brouwer, Andries E. Polak, Sven C. Uniqueness of codes using semidefinite programming |
title | Uniqueness of codes using semidefinite programming |
title_full | Uniqueness of codes using semidefinite programming |
title_fullStr | Uniqueness of codes using semidefinite programming |
title_full_unstemmed | Uniqueness of codes using semidefinite programming |
title_short | Uniqueness of codes using semidefinite programming |
title_sort | uniqueness of codes using semidefinite programming |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6743705/ https://www.ncbi.nlm.nih.gov/pubmed/31564772 http://dx.doi.org/10.1007/s10623-018-0589-8 |
work_keys_str_mv | AT brouwerandriese uniquenessofcodesusingsemidefiniteprogramming AT polaksvenc uniquenessofcodesusingsemidefiniteprogramming |