Cargando…

Climatic, geomorphologic and hydrologic perturbations as drivers for mid‐ to late Holocene development of ice‐wedge polygons in the western Canadian Arctic

Ice‐wedge polygons are widespread periglacial features and influence landscape hydrology and carbon storage. The influence of climate and topography on polygon development is not entirely clear, however, giving high uncertainties to projections of permafrost development. We studied the mid‐ to late...

Descripción completa

Detalles Bibliográficos
Autores principales: Wolter, J., Lantuit, H., Wetterich, S., Rethemeyer, J., Fritz, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6743709/
https://www.ncbi.nlm.nih.gov/pubmed/31543690
http://dx.doi.org/10.1002/ppp.1977
_version_ 1783451316529397760
author Wolter, J.
Lantuit, H.
Wetterich, S.
Rethemeyer, J.
Fritz, M.
author_facet Wolter, J.
Lantuit, H.
Wetterich, S.
Rethemeyer, J.
Fritz, M.
author_sort Wolter, J.
collection PubMed
description Ice‐wedge polygons are widespread periglacial features and influence landscape hydrology and carbon storage. The influence of climate and topography on polygon development is not entirely clear, however, giving high uncertainties to projections of permafrost development. We studied the mid‐ to late Holocene development of modern ice‐wedge polygon sites to explore drivers of change and reasons for long‐term stability. We analyzed organic carbon, total nitrogen, stable carbon isotopes, grain size composition and plant macrofossils in six cores from three polygons. We found that all sites developed from aquatic to wetland conditions. In the mid‐Holocene, shallow lakes and partly submerged ice‐wedge polygons existed at the studied sites. An erosional hiatus of ca 5000 years followed, and ice‐wedge polygons re‐initiated within the last millennium. Ice‐wedge melt and surface drying during the last century were linked to climatic warming. The influence of climate on ice‐wedge polygon development was outweighed by geomorphology during most of the late Holocene. Recent warming, however, caused ice‐wedge degradation at all sites. Our study showed that where waterlogged ground was maintained, low‐centered polygons persisted for millennia. Ice‐wedge melt and increased drainage through geomorphic disturbance, however, triggered conversion into high‐centered polygons and may lead to self‐enhancing degradation under continued warming.
format Online
Article
Text
id pubmed-6743709
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-67437092019-09-18 Climatic, geomorphologic and hydrologic perturbations as drivers for mid‐ to late Holocene development of ice‐wedge polygons in the western Canadian Arctic Wolter, J. Lantuit, H. Wetterich, S. Rethemeyer, J. Fritz, M. Permafr Periglac Process Research Articles Ice‐wedge polygons are widespread periglacial features and influence landscape hydrology and carbon storage. The influence of climate and topography on polygon development is not entirely clear, however, giving high uncertainties to projections of permafrost development. We studied the mid‐ to late Holocene development of modern ice‐wedge polygon sites to explore drivers of change and reasons for long‐term stability. We analyzed organic carbon, total nitrogen, stable carbon isotopes, grain size composition and plant macrofossils in six cores from three polygons. We found that all sites developed from aquatic to wetland conditions. In the mid‐Holocene, shallow lakes and partly submerged ice‐wedge polygons existed at the studied sites. An erosional hiatus of ca 5000 years followed, and ice‐wedge polygons re‐initiated within the last millennium. Ice‐wedge melt and surface drying during the last century were linked to climatic warming. The influence of climate on ice‐wedge polygon development was outweighed by geomorphology during most of the late Holocene. Recent warming, however, caused ice‐wedge degradation at all sites. Our study showed that where waterlogged ground was maintained, low‐centered polygons persisted for millennia. Ice‐wedge melt and increased drainage through geomorphic disturbance, however, triggered conversion into high‐centered polygons and may lead to self‐enhancing degradation under continued warming. John Wiley and Sons Inc. 2018-07-02 2018 /pmc/articles/PMC6743709/ /pubmed/31543690 http://dx.doi.org/10.1002/ppp.1977 Text en © 2018 The Authors Permafrost and Periglacial Processes Published by John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Wolter, J.
Lantuit, H.
Wetterich, S.
Rethemeyer, J.
Fritz, M.
Climatic, geomorphologic and hydrologic perturbations as drivers for mid‐ to late Holocene development of ice‐wedge polygons in the western Canadian Arctic
title Climatic, geomorphologic and hydrologic perturbations as drivers for mid‐ to late Holocene development of ice‐wedge polygons in the western Canadian Arctic
title_full Climatic, geomorphologic and hydrologic perturbations as drivers for mid‐ to late Holocene development of ice‐wedge polygons in the western Canadian Arctic
title_fullStr Climatic, geomorphologic and hydrologic perturbations as drivers for mid‐ to late Holocene development of ice‐wedge polygons in the western Canadian Arctic
title_full_unstemmed Climatic, geomorphologic and hydrologic perturbations as drivers for mid‐ to late Holocene development of ice‐wedge polygons in the western Canadian Arctic
title_short Climatic, geomorphologic and hydrologic perturbations as drivers for mid‐ to late Holocene development of ice‐wedge polygons in the western Canadian Arctic
title_sort climatic, geomorphologic and hydrologic perturbations as drivers for mid‐ to late holocene development of ice‐wedge polygons in the western canadian arctic
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6743709/
https://www.ncbi.nlm.nih.gov/pubmed/31543690
http://dx.doi.org/10.1002/ppp.1977
work_keys_str_mv AT wolterj climaticgeomorphologicandhydrologicperturbationsasdriversformidtolateholocenedevelopmentoficewedgepolygonsinthewesterncanadianarctic
AT lantuith climaticgeomorphologicandhydrologicperturbationsasdriversformidtolateholocenedevelopmentoficewedgepolygonsinthewesterncanadianarctic
AT wetterichs climaticgeomorphologicandhydrologicperturbationsasdriversformidtolateholocenedevelopmentoficewedgepolygonsinthewesterncanadianarctic
AT rethemeyerj climaticgeomorphologicandhydrologicperturbationsasdriversformidtolateholocenedevelopmentoficewedgepolygonsinthewesterncanadianarctic
AT fritzm climaticgeomorphologicandhydrologicperturbationsasdriversformidtolateholocenedevelopmentoficewedgepolygonsinthewesterncanadianarctic