Cargando…

Paramagnon drag in high thermoelectric figure of merit Li-doped MnTe

Local thermal magnetization fluctuations in Li-doped MnTe are found to increase its thermopower α strongly at temperatures up to 900 K. Below the Néel temperature (T(N) ~ 307 K), MnTe is antiferromagnetic, and magnon drag contributes α(md) to the thermopower, which scales as ~T(3). Magnon drag persi...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Y., Lu, T., Polash, Md M. H., Rasoulianboroujeni, M., Liu, N., Manley, M. E., Deng, Y., Sun, P. J., Chen, X. L., Hermann, R. P., Vashaee, D., Heremans, J. P., Zhao, H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744264/
https://www.ncbi.nlm.nih.gov/pubmed/31548980
http://dx.doi.org/10.1126/sciadv.aat9461
Descripción
Sumario:Local thermal magnetization fluctuations in Li-doped MnTe are found to increase its thermopower α strongly at temperatures up to 900 K. Below the Néel temperature (T(N) ~ 307 K), MnTe is antiferromagnetic, and magnon drag contributes α(md) to the thermopower, which scales as ~T(3). Magnon drag persists into the paramagnetic state up to >3 × T(N) because of long-lived, short-range antiferromagnet-like fluctuations (paramagnons) shown by neutron spectroscopy to exist in the paramagnetic state. The paramagnon lifetime is longer than the charge carrier–magnon interaction time; its spin-spin spatial correlation length is larger than the free-carrier effective Bohr radius and de Broglie wavelength. Thus, to itinerant carriers, paramagnons look like magnons and give a paramagnon-drag thermopower. This contribution results in an optimally doped material having a thermoelectric figure of merit ZT > 1 at T > ~900 K, the first material with a technologically meaningful thermoelectric energy conversion efficiency from a spin-caloritronic effect.