Cargando…
A chemo-enzymatic oxidation cascade to activate C–H bonds with in situ generated H(2)O(2)
Continuous low-level supply or in situ generation of hydrogen peroxide (H(2)O(2)) is essential for the stability of unspecific peroxygenases, which are deemed ideal biocatalysts for the selective activation of C–H bonds. To envisage potential large scale applications of combined catalytic systems th...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744418/ https://www.ncbi.nlm.nih.gov/pubmed/31519878 http://dx.doi.org/10.1038/s41467-019-12120-w |
_version_ | 1783451365082660864 |
---|---|
author | Freakley, Simon J. Kochius, Svenja van Marwijk, Jacqueline Fenner, Caryn Lewis, Richard J. Baldenius, Kai Marais, Sarel S. Opperman, Diederik J. Harrison, Susan T. L. Alcalde, Miguel Smit, Martha S. Hutchings, Graham J. |
author_facet | Freakley, Simon J. Kochius, Svenja van Marwijk, Jacqueline Fenner, Caryn Lewis, Richard J. Baldenius, Kai Marais, Sarel S. Opperman, Diederik J. Harrison, Susan T. L. Alcalde, Miguel Smit, Martha S. Hutchings, Graham J. |
author_sort | Freakley, Simon J. |
collection | PubMed |
description | Continuous low-level supply or in situ generation of hydrogen peroxide (H(2)O(2)) is essential for the stability of unspecific peroxygenases, which are deemed ideal biocatalysts for the selective activation of C–H bonds. To envisage potential large scale applications of combined catalytic systems the reactions need to be simple, efficient and produce minimal by-products. We show that gold-palladium nanoparticles supported on TiO(2) or carbon have sufficient activity at ambient temperature and pressure to generate H(2)O(2) from H(2) and O(2) and supply the oxidant to the engineered unspecific heme-thiolate peroxygenase PaDa-I. This tandem catalyst combination facilitates efficient oxidation of a range of C-H bonds to hydroxylated products in one reaction vessel with only water as a by-product under conditions that could be easily scaled. |
format | Online Article Text |
id | pubmed-6744418 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-67444182019-09-16 A chemo-enzymatic oxidation cascade to activate C–H bonds with in situ generated H(2)O(2) Freakley, Simon J. Kochius, Svenja van Marwijk, Jacqueline Fenner, Caryn Lewis, Richard J. Baldenius, Kai Marais, Sarel S. Opperman, Diederik J. Harrison, Susan T. L. Alcalde, Miguel Smit, Martha S. Hutchings, Graham J. Nat Commun Article Continuous low-level supply or in situ generation of hydrogen peroxide (H(2)O(2)) is essential for the stability of unspecific peroxygenases, which are deemed ideal biocatalysts for the selective activation of C–H bonds. To envisage potential large scale applications of combined catalytic systems the reactions need to be simple, efficient and produce minimal by-products. We show that gold-palladium nanoparticles supported on TiO(2) or carbon have sufficient activity at ambient temperature and pressure to generate H(2)O(2) from H(2) and O(2) and supply the oxidant to the engineered unspecific heme-thiolate peroxygenase PaDa-I. This tandem catalyst combination facilitates efficient oxidation of a range of C-H bonds to hydroxylated products in one reaction vessel with only water as a by-product under conditions that could be easily scaled. Nature Publishing Group UK 2019-09-13 /pmc/articles/PMC6744418/ /pubmed/31519878 http://dx.doi.org/10.1038/s41467-019-12120-w Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Freakley, Simon J. Kochius, Svenja van Marwijk, Jacqueline Fenner, Caryn Lewis, Richard J. Baldenius, Kai Marais, Sarel S. Opperman, Diederik J. Harrison, Susan T. L. Alcalde, Miguel Smit, Martha S. Hutchings, Graham J. A chemo-enzymatic oxidation cascade to activate C–H bonds with in situ generated H(2)O(2) |
title | A chemo-enzymatic oxidation cascade to activate C–H bonds with in situ generated H(2)O(2) |
title_full | A chemo-enzymatic oxidation cascade to activate C–H bonds with in situ generated H(2)O(2) |
title_fullStr | A chemo-enzymatic oxidation cascade to activate C–H bonds with in situ generated H(2)O(2) |
title_full_unstemmed | A chemo-enzymatic oxidation cascade to activate C–H bonds with in situ generated H(2)O(2) |
title_short | A chemo-enzymatic oxidation cascade to activate C–H bonds with in situ generated H(2)O(2) |
title_sort | chemo-enzymatic oxidation cascade to activate c–h bonds with in situ generated h(2)o(2) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744418/ https://www.ncbi.nlm.nih.gov/pubmed/31519878 http://dx.doi.org/10.1038/s41467-019-12120-w |
work_keys_str_mv | AT freakleysimonj achemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2 AT kochiussvenja achemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2 AT vanmarwijkjacqueline achemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2 AT fennercaryn achemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2 AT lewisrichardj achemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2 AT baldeniuskai achemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2 AT maraissarels achemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2 AT oppermandiederikj achemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2 AT harrisonsusantl achemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2 AT alcaldemiguel achemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2 AT smitmarthas achemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2 AT hutchingsgrahamj achemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2 AT freakleysimonj chemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2 AT kochiussvenja chemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2 AT vanmarwijkjacqueline chemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2 AT fennercaryn chemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2 AT lewisrichardj chemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2 AT baldeniuskai chemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2 AT maraissarels chemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2 AT oppermandiederikj chemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2 AT harrisonsusantl chemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2 AT alcaldemiguel chemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2 AT smitmarthas chemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2 AT hutchingsgrahamj chemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2 |