Cargando…

A chemo-enzymatic oxidation cascade to activate C–H bonds with in situ generated H(2)O(2)

Continuous low-level supply or in situ generation of hydrogen peroxide (H(2)O(2)) is essential for the stability of unspecific peroxygenases, which are deemed ideal biocatalysts for the selective activation of C–H bonds. To envisage potential large scale applications of combined catalytic systems th...

Descripción completa

Detalles Bibliográficos
Autores principales: Freakley, Simon J., Kochius, Svenja, van Marwijk, Jacqueline, Fenner, Caryn, Lewis, Richard J., Baldenius, Kai, Marais, Sarel S., Opperman, Diederik J., Harrison, Susan T. L., Alcalde, Miguel, Smit, Martha S., Hutchings, Graham J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744418/
https://www.ncbi.nlm.nih.gov/pubmed/31519878
http://dx.doi.org/10.1038/s41467-019-12120-w
_version_ 1783451365082660864
author Freakley, Simon J.
Kochius, Svenja
van Marwijk, Jacqueline
Fenner, Caryn
Lewis, Richard J.
Baldenius, Kai
Marais, Sarel S.
Opperman, Diederik J.
Harrison, Susan T. L.
Alcalde, Miguel
Smit, Martha S.
Hutchings, Graham J.
author_facet Freakley, Simon J.
Kochius, Svenja
van Marwijk, Jacqueline
Fenner, Caryn
Lewis, Richard J.
Baldenius, Kai
Marais, Sarel S.
Opperman, Diederik J.
Harrison, Susan T. L.
Alcalde, Miguel
Smit, Martha S.
Hutchings, Graham J.
author_sort Freakley, Simon J.
collection PubMed
description Continuous low-level supply or in situ generation of hydrogen peroxide (H(2)O(2)) is essential for the stability of unspecific peroxygenases, which are deemed ideal biocatalysts for the selective activation of C–H bonds. To envisage potential large scale applications of combined catalytic systems the reactions need to be simple, efficient and produce minimal by-products. We show that gold-palladium nanoparticles supported on TiO(2) or carbon have sufficient activity at ambient temperature and pressure to generate H(2)O(2) from H(2) and O(2) and supply the oxidant to the engineered unspecific heme-thiolate peroxygenase PaDa-I. This tandem catalyst combination facilitates efficient oxidation of a range of C-H bonds to hydroxylated products in one reaction vessel with only water as a by-product under conditions that could be easily scaled.
format Online
Article
Text
id pubmed-6744418
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-67444182019-09-16 A chemo-enzymatic oxidation cascade to activate C–H bonds with in situ generated H(2)O(2) Freakley, Simon J. Kochius, Svenja van Marwijk, Jacqueline Fenner, Caryn Lewis, Richard J. Baldenius, Kai Marais, Sarel S. Opperman, Diederik J. Harrison, Susan T. L. Alcalde, Miguel Smit, Martha S. Hutchings, Graham J. Nat Commun Article Continuous low-level supply or in situ generation of hydrogen peroxide (H(2)O(2)) is essential for the stability of unspecific peroxygenases, which are deemed ideal biocatalysts for the selective activation of C–H bonds. To envisage potential large scale applications of combined catalytic systems the reactions need to be simple, efficient and produce minimal by-products. We show that gold-palladium nanoparticles supported on TiO(2) or carbon have sufficient activity at ambient temperature and pressure to generate H(2)O(2) from H(2) and O(2) and supply the oxidant to the engineered unspecific heme-thiolate peroxygenase PaDa-I. This tandem catalyst combination facilitates efficient oxidation of a range of C-H bonds to hydroxylated products in one reaction vessel with only water as a by-product under conditions that could be easily scaled. Nature Publishing Group UK 2019-09-13 /pmc/articles/PMC6744418/ /pubmed/31519878 http://dx.doi.org/10.1038/s41467-019-12120-w Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Freakley, Simon J.
Kochius, Svenja
van Marwijk, Jacqueline
Fenner, Caryn
Lewis, Richard J.
Baldenius, Kai
Marais, Sarel S.
Opperman, Diederik J.
Harrison, Susan T. L.
Alcalde, Miguel
Smit, Martha S.
Hutchings, Graham J.
A chemo-enzymatic oxidation cascade to activate C–H bonds with in situ generated H(2)O(2)
title A chemo-enzymatic oxidation cascade to activate C–H bonds with in situ generated H(2)O(2)
title_full A chemo-enzymatic oxidation cascade to activate C–H bonds with in situ generated H(2)O(2)
title_fullStr A chemo-enzymatic oxidation cascade to activate C–H bonds with in situ generated H(2)O(2)
title_full_unstemmed A chemo-enzymatic oxidation cascade to activate C–H bonds with in situ generated H(2)O(2)
title_short A chemo-enzymatic oxidation cascade to activate C–H bonds with in situ generated H(2)O(2)
title_sort chemo-enzymatic oxidation cascade to activate c–h bonds with in situ generated h(2)o(2)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744418/
https://www.ncbi.nlm.nih.gov/pubmed/31519878
http://dx.doi.org/10.1038/s41467-019-12120-w
work_keys_str_mv AT freakleysimonj achemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2
AT kochiussvenja achemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2
AT vanmarwijkjacqueline achemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2
AT fennercaryn achemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2
AT lewisrichardj achemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2
AT baldeniuskai achemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2
AT maraissarels achemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2
AT oppermandiederikj achemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2
AT harrisonsusantl achemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2
AT alcaldemiguel achemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2
AT smitmarthas achemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2
AT hutchingsgrahamj achemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2
AT freakleysimonj chemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2
AT kochiussvenja chemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2
AT vanmarwijkjacqueline chemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2
AT fennercaryn chemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2
AT lewisrichardj chemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2
AT baldeniuskai chemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2
AT maraissarels chemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2
AT oppermandiederikj chemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2
AT harrisonsusantl chemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2
AT alcaldemiguel chemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2
AT smitmarthas chemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2
AT hutchingsgrahamj chemoenzymaticoxidationcascadetoactivatechbondswithinsitugeneratedh2o2