Cargando…
Artificial neural network analysis of the oxygen saturation signal enables accurate diagnostics of sleep apnea
The severity of obstructive sleep apnea (OSA) is classified using apnea-hypopnea index (AHI). Accurate determination of AHI currently requires manual analysis and complicated registration setup making it expensive and labor intensive. Partially for these reasons, OSA is a heavily underdiagnosed dise...
Autores principales: | Nikkonen, Sami, Afara, Isaac O., Leppänen, Timo, Töyräs, Juha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744469/ https://www.ncbi.nlm.nih.gov/pubmed/31519927 http://dx.doi.org/10.1038/s41598-019-49330-7 |
Ejemplares similares
-
Author Correction: Artificial neural network analysis of the oxygen saturation signal enables accurate diagnostics of sleep apnea
por: Nikkonen, Sami, et al.
Publicado: (2020) -
Deep learning enables sleep staging from photoplethysmogram for patients with suspected sleep apnea
por: Korkalainen, Henri, et al.
Publicado: (2020) -
Intra-night variation in apnea-hypopnea index affects diagnostics and prognostics of obstructive sleep apnea
por: Nikkonen, Sami, et al.
Publicado: (2019) -
Longer and Deeper Desaturations Are Associated With the Worsening of Mild Sleep Apnea: The Sleep Heart Health Study
por: Karhu, Tuomas, et al.
Publicado: (2021) -
STAR sleep recording export software for automatic export and anonymization of sleep studies
por: Nikkonen, Sami, et al.
Publicado: (2022)