Cargando…

The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region

Tibetan permafrost largely formed during the late Pleistocene glacial period and shrank in the Holocene Thermal Maximum period. Quantifying the impacts of paleoclimatic extremes on soil carbon stock can shed light on the vulnerability of permafrost carbon in the future. Here, we synthesize data from...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Jinzhi, Wang, Tao, Piao, Shilong, Smith, Pete, Zhang, Ganlin, Yan, Zhengjie, Ren, Shuai, Liu, Dan, Wang, Shiping, Chen, Shengyun, Dai, Fuqiang, He, Jinsheng, Li, Yingnian, Liu, Yongwen, Mao, Jiafu, Arain, Altaf, Tian, Hanqin, Shi, Xiaoying, Yang, Yuanhe, Zeng, Ning, Zhao, Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744502/
https://www.ncbi.nlm.nih.gov/pubmed/31519899
http://dx.doi.org/10.1038/s41467-019-12214-5
_version_ 1783451384966807552
author Ding, Jinzhi
Wang, Tao
Piao, Shilong
Smith, Pete
Zhang, Ganlin
Yan, Zhengjie
Ren, Shuai
Liu, Dan
Wang, Shiping
Chen, Shengyun
Dai, Fuqiang
He, Jinsheng
Li, Yingnian
Liu, Yongwen
Mao, Jiafu
Arain, Altaf
Tian, Hanqin
Shi, Xiaoying
Yang, Yuanhe
Zeng, Ning
Zhao, Lin
author_facet Ding, Jinzhi
Wang, Tao
Piao, Shilong
Smith, Pete
Zhang, Ganlin
Yan, Zhengjie
Ren, Shuai
Liu, Dan
Wang, Shiping
Chen, Shengyun
Dai, Fuqiang
He, Jinsheng
Li, Yingnian
Liu, Yongwen
Mao, Jiafu
Arain, Altaf
Tian, Hanqin
Shi, Xiaoying
Yang, Yuanhe
Zeng, Ning
Zhao, Lin
author_sort Ding, Jinzhi
collection PubMed
description Tibetan permafrost largely formed during the late Pleistocene glacial period and shrank in the Holocene Thermal Maximum period. Quantifying the impacts of paleoclimatic extremes on soil carbon stock can shed light on the vulnerability of permafrost carbon in the future. Here, we synthesize data from 1114 sites across the Tibetan permafrost region to report that paleoclimate is more important than modern climate in shaping current permafrost carbon distribution, and its importance increases with soil depth, mainly through forming the soilʼs physiochemical properties. We derive a new estimate of modern soil carbon stock to 3 m depth by including the paleoclimate effects, and find that the stock ([Formula: see text] PgC) is triple that predicted by ecosystem models (11.5 ± 4.2 s.e.m PgC), which use pre-industrial climate to initialize the soil carbon pool. The discrepancy highlights the urgent need to incorporate paleoclimate information into model initialization for simulating permafrost soil carbon stocks.
format Online
Article
Text
id pubmed-6744502
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-67445022019-09-16 The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region Ding, Jinzhi Wang, Tao Piao, Shilong Smith, Pete Zhang, Ganlin Yan, Zhengjie Ren, Shuai Liu, Dan Wang, Shiping Chen, Shengyun Dai, Fuqiang He, Jinsheng Li, Yingnian Liu, Yongwen Mao, Jiafu Arain, Altaf Tian, Hanqin Shi, Xiaoying Yang, Yuanhe Zeng, Ning Zhao, Lin Nat Commun Article Tibetan permafrost largely formed during the late Pleistocene glacial period and shrank in the Holocene Thermal Maximum period. Quantifying the impacts of paleoclimatic extremes on soil carbon stock can shed light on the vulnerability of permafrost carbon in the future. Here, we synthesize data from 1114 sites across the Tibetan permafrost region to report that paleoclimate is more important than modern climate in shaping current permafrost carbon distribution, and its importance increases with soil depth, mainly through forming the soilʼs physiochemical properties. We derive a new estimate of modern soil carbon stock to 3 m depth by including the paleoclimate effects, and find that the stock ([Formula: see text] PgC) is triple that predicted by ecosystem models (11.5 ± 4.2 s.e.m PgC), which use pre-industrial climate to initialize the soil carbon pool. The discrepancy highlights the urgent need to incorporate paleoclimate information into model initialization for simulating permafrost soil carbon stocks. Nature Publishing Group UK 2019-09-13 /pmc/articles/PMC6744502/ /pubmed/31519899 http://dx.doi.org/10.1038/s41467-019-12214-5 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Ding, Jinzhi
Wang, Tao
Piao, Shilong
Smith, Pete
Zhang, Ganlin
Yan, Zhengjie
Ren, Shuai
Liu, Dan
Wang, Shiping
Chen, Shengyun
Dai, Fuqiang
He, Jinsheng
Li, Yingnian
Liu, Yongwen
Mao, Jiafu
Arain, Altaf
Tian, Hanqin
Shi, Xiaoying
Yang, Yuanhe
Zeng, Ning
Zhao, Lin
The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region
title The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region
title_full The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region
title_fullStr The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region
title_full_unstemmed The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region
title_short The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region
title_sort paleoclimatic footprint in the soil carbon stock of the tibetan permafrost region
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744502/
https://www.ncbi.nlm.nih.gov/pubmed/31519899
http://dx.doi.org/10.1038/s41467-019-12214-5
work_keys_str_mv AT dingjinzhi thepaleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT wangtao thepaleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT piaoshilong thepaleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT smithpete thepaleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT zhangganlin thepaleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT yanzhengjie thepaleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT renshuai thepaleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT liudan thepaleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT wangshiping thepaleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT chenshengyun thepaleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT daifuqiang thepaleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT hejinsheng thepaleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT liyingnian thepaleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT liuyongwen thepaleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT maojiafu thepaleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT arainaltaf thepaleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT tianhanqin thepaleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT shixiaoying thepaleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT yangyuanhe thepaleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT zengning thepaleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT zhaolin thepaleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT dingjinzhi paleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT wangtao paleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT piaoshilong paleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT smithpete paleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT zhangganlin paleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT yanzhengjie paleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT renshuai paleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT liudan paleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT wangshiping paleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT chenshengyun paleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT daifuqiang paleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT hejinsheng paleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT liyingnian paleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT liuyongwen paleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT maojiafu paleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT arainaltaf paleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT tianhanqin paleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT shixiaoying paleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT yangyuanhe paleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT zengning paleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion
AT zhaolin paleoclimaticfootprintinthesoilcarbonstockofthetibetanpermafrostregion