Cargando…
Gaussian synapses for probabilistic neural networks
The recent decline in energy, size and complexity scaling of traditional von Neumann architecture has resurrected considerable interest in brain-inspired computing. Artificial neural networks (ANNs) based on emerging devices, such as memristors, achieve brain-like computing but lack energy-efficienc...
Autores principales: | Sebastian, Amritanand, Pannone, Andrew, Subbulakshmi Radhakrishnan, Shiva, Das, Saptarshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744503/ https://www.ncbi.nlm.nih.gov/pubmed/31519885 http://dx.doi.org/10.1038/s41467-019-12035-6 |
Ejemplares similares
-
A biomimetic neural encoder for spiking neural network
por: Subbulakshmi Radhakrishnan, Shiva, et al.
Publicado: (2021) -
Two-dimensional materials-based probabilistic synapses and reconfigurable neurons for measuring inference uncertainty using Bayesian neural networks
por: Sebastian, Amritanand, et al.
Publicado: (2022) -
Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses
por: Serb, Alexander, et al.
Publicado: (2016) -
Probabilistic fluorescence-based synapse detection
por: Simhal, Anish K., et al.
Publicado: (2017) -
Interval probabilistic neural network
por: Kowalski, Piotr A., et al.
Publicado: (2015)