Cargando…
Technical considerations of multi-parametric tissue outcome prediction methods in acute ischemic stroke patients
Decisions regarding acute stroke treatment rely heavily on imaging, but interpretation can be difficult for physicians. Machine learning methods can assist clinicians by providing tissue outcome predictions for different treatment approaches based on acute multi-parametric imaging. To produce such c...
Autores principales: | Winder, Anthony J., Siemonsen, Susanne, Flottmann, Fabian, Thomalla, Götz, Fiehler, Jens, Forkert, Nils D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744509/ https://www.ncbi.nlm.nih.gov/pubmed/31519923 http://dx.doi.org/10.1038/s41598-019-49460-y |
Ejemplares similares
-
CT-perfusion stroke imaging: a threshold free probabilistic approach to predict infarct volume compared to traditional ischemic thresholds
por: Flottmann, Fabian, et al.
Publicado: (2017) -
Predicting the tissue outcome of acute ischemic stroke from acute 4D computed tomography perfusion imaging using temporal features and deep learning
por: Winder, Anthony J., et al.
Publicado: (2022) -
Improved multi-parametric prediction of tissue outcome in acute ischemic stroke patients using spatial features
por: Grosser, Malte, et al.
Publicado: (2020) -
Correction: Improved multi-parametric prediction of tissue outcome in acute ischemic stroke patients using spatial features
por: Grosser, Malte, et al.
Publicado: (2020) -
Impact of Severe Extracranial ICA Stenosis on MRI Perfusion and Diffusion Parameters in Acute Ischemic Stroke
por: Kaesemann, Philipp, et al.
Publicado: (2014)