Cargando…

Deficiency in the double-stranded RNA binding protein HYPONASTIC LEAVES1 increases sensitivity to the endoplasmic reticulum stress inducer tunicamycin in Arabidopsis

OBJECTIVE: microRNA (miRNA) is a small non-coding RNA that regulates gene expression by sequence-dependent binding to protein-coding mRNA in eukaryotic cells. In plants, miRNA plays important roles in a plethora of physiological processes, including abiotic and biotic stress responses. The present s...

Descripción completa

Detalles Bibliográficos
Autores principales: Hirata, Rikako, Mishiba, Kei-ichiro, Koizumi, Nozomu, Iwata, Yuji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744651/
https://www.ncbi.nlm.nih.gov/pubmed/31521187
http://dx.doi.org/10.1186/s13104-019-4623-3
Descripción
Sumario:OBJECTIVE: microRNA (miRNA) is a small non-coding RNA that regulates gene expression by sequence-dependent binding to protein-coding mRNA in eukaryotic cells. In plants, miRNA plays important roles in a plethora of physiological processes, including abiotic and biotic stress responses. The present study was conducted to investigate whether miRNA-mediated regulation is important for the endoplasmic reticulum (ER) stress response in Arabidopsis. RESULTS: We found that hyl1 mutant plants are more sensitive to tunicamycin, an inhibitor of N-linked glycosylation that causes ER stress than wild-type plants. Other miRNA-related mutants, se and ago1, exhibited similar sensitivity to the wild-type, indicating that the hypersensitive phenotype is attributable to the loss-of-function of HYL1, rather than deficiency in general miRNA biogenesis and function. However, the transcriptional response of select ER stress-responsive genes in hyl1 mutant plants was indistinguishable from that of wild-type plants, suggesting that the loss-of-function of HYL1 does not affect the ER stress signaling pathways.