Cargando…
Towards pixel-to-pixel deep nucleus detection in microscopy images
BACKGROUND: Nucleus is a fundamental task in microscopy image analysis and supports many other quantitative studies such as object counting, segmentation, tracking, etc. Deep neural networks are emerging as a powerful tool for biomedical image computing; in particular, convolutional neural networks...
Autores principales: | Xing, Fuyong, Xie, Yuanpu, Shi, Xiaoshuang, Chen, Pingjun, Zhang, Zizhao, Yang, Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744696/ https://www.ncbi.nlm.nih.gov/pubmed/31521104 http://dx.doi.org/10.1186/s12859-019-3037-5 |
Ejemplares similares
-
Correction to: Towards pixel-to-pixel deep nucleus detection in microscopy images
por: Xing, Fuyong, et al.
Publicado: (2019) -
Development of silicon pixels for strangeness detection in nucleus-nucleus collisions
por: Antinori, Federico, et al.
Publicado: (1995) -
Synchronization of scanning probe and pixelated sensor for image-guided diffraction microscopy
por: Seifer, Shahar, et al.
Publicado: (2023) -
Loss-Based Attention for Interpreting Image-Level Prediction of Convolutional Neural Networks
por: Shi, Xiaoshuang, et al.
Publicado: (2021) -
International Workshop on Semiconductor Pixel Detectors for Particles and Imaging (PIXEL2018)
por: Collective
Publicado: (2018)