Cargando…
Invisible Color Variations of Facial Erythema: A Novel Early Marker for Diabetic Complications?
AIM: (1) To quantify the invisible variations of facial erythema that occur as the blood flows in and out of the face of diabetic patients, during the blood pulse wave using an innovative image processing method, on videos recorded with a conventional digital camera and (2) to determine whether this...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6745171/ https://www.ncbi.nlm.nih.gov/pubmed/31565656 http://dx.doi.org/10.1155/2019/4583895 |
Sumario: | AIM: (1) To quantify the invisible variations of facial erythema that occur as the blood flows in and out of the face of diabetic patients, during the blood pulse wave using an innovative image processing method, on videos recorded with a conventional digital camera and (2) to determine whether this “unveiled” facial red coloration and its periodic variations present specific characteristics in diabetic patients different from those in control subjects. METHODS: We video recorded the faces of 20 diabetic patients with peripheral neuropathy, retinopathy, and/or nephropathy and 10 nondiabetic control subjects, using a Canon EOS camera, for 240 s. Only one participant presented visible facial erythema. We applied novel image processing methods to make the facial redness and its variations visible and automatically detected and extracted the redness intensity of eight facial patches, from each frame. We compared average and standard deviations of redness in the two groups using t-tests. RESULTS: Facial redness varies, imperceptibly and periodically, between redder and paler, following the heart pulsation. This variation is consistently and significantly larger in diabetic patients compared to controls (p value < 0.001). CONCLUSIONS: Our study and its results (i.e., larger variations of facial redness with the heartbeats in diabetic patients) are unprecedented. One limitation is the sample size. Confirmation in a larger study would ground the development of a noninvasive cost-effective automatic tool for early detection of diabetic complications, based on measuring invisible redness variations, by image processing of facial videos captured at home with the patient's smartphone. |
---|