Cargando…

Niches and climate-change refugia in hundreds of species from one of the most arid places on Earth

BACKGROUND AND AIMS: Global climate change is a major threat to biodiversity worldwide. Several arid areas might expand in the future, but it is not clear if this change would be positive or negative for arid-adapted lineages. Here, we explore whether climatic niche properties are involved in the co...

Descripción completa

Detalles Bibliográficos
Autores principales: Duarte, Milen, Guerrero, Pablo C., Arroyo, Mary T.K., Bustamante, Ramiro O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6745186/
https://www.ncbi.nlm.nih.gov/pubmed/31565547
http://dx.doi.org/10.7717/peerj.7409
Descripción
Sumario:BACKGROUND AND AIMS: Global climate change is a major threat to biodiversity worldwide. Several arid areas might expand in the future, but it is not clear if this change would be positive or negative for arid-adapted lineages. Here, we explore whether climatic niche properties are involved in the configuration of climate refugia and thus in future species trends. METHODS: To estimate putative climate refugia and potential expansion areas, we used maximum entropy models and four climate-change models to generate current and future potential distributions of 142 plant species endemic to the Atacama and mediterranean Chilean ecosystems. We assessed the relationship between the similarity and breadth of thermal and precipitation niches with the size of climate refugia and areas of potential expansions. KEY RESULTS: We found a positive relationship between breadth and similarity for thermal niche with the size of climate refugia, but only niche similarity of the thermal niche was positively related with the size of expansion areas. Although all lineages would reduce their distributions in the future, few species are predicted to be at risk of extinction in their current distribution, and all of them presented potential expansion areas. CONCLUSION: Species with a broad niche and niche dissimilarity will have larger refugia, and species with niche dissimilarity will have larger expansion areas. In addition, our prediction for arid lineages shows that these species will be moderately affected by climate change.