Cargando…

A numerical investigation of the heat transfer characteristics of water-based mango bark nanofluid flowing in a double-pipe heat exchanger

In this study, the heat transfer characteristics of a new class of nanofluids made from mango bark was numerically simulated and studied during turbulent flow through a double pipe heat exchanger. A range of volume fractions was considered for a particle size of 100 nm. A two-phase flow was consider...

Descripción completa

Detalles Bibliográficos
Autores principales: Onyiriuka, E.J., Ighodaro, O.O., Adelaja, A.O., Ewim, D.R.E., Bhattacharyya, S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6745410/
https://www.ncbi.nlm.nih.gov/pubmed/31538112
http://dx.doi.org/10.1016/j.heliyon.2019.e02416
Descripción
Sumario:In this study, the heat transfer characteristics of a new class of nanofluids made from mango bark was numerically simulated and studied during turbulent flow through a double pipe heat exchanger. A range of volume fractions was considered for a particle size of 100 nm. A two-phase flow was considered using the mixture model. The mixture model governing equations of continuity, momentum, energy and volume fraction were solved using the finite-volume method. The results showed an increase of the Nusselt number by 68% for a Reynolds number of 5,000 and 45% for a Reynolds number of 13 000, and the heat transfer coefficient of the nanofluid was about twice that of the base fluid. In addition, the Nusselt number decreased by an average value of 0.76 with an increase of volume fraction by 1%. It was also found that there was a range of Reynolds numbers in which the trend of the average heat transfer coefficient of the nanofluid was completely reversed, and several plots showing zones of higher heat transfer which if taken advantage of in design will lead to higher heat transfer while avoiding other zones that have low heat transfer. It is hoped that these results will influence the thermal design of new heat exchangers.