Cargando…

Generating Point Cloud from Measurements and Shapes Based on Convolutional Neural Network: An Application for Building 3D Human Model

It has been widely known that 3D shape models are comprehensively parameterized using point cloud and meshes. The point cloud particularly is much simpler to handle compared with meshes, and it also contains the shape information of a 3D model. In this paper, we would like to introduce our new metho...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Mau Tung, Dang, Thanh Vu, Tran Thi, Minh Kieu, The Bao, Pham
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6745469/
https://www.ncbi.nlm.nih.gov/pubmed/31565043
http://dx.doi.org/10.1155/2019/1353601
Descripción
Sumario:It has been widely known that 3D shape models are comprehensively parameterized using point cloud and meshes. The point cloud particularly is much simpler to handle compared with meshes, and it also contains the shape information of a 3D model. In this paper, we would like to introduce our new method to generating the 3D point cloud from a set of crucial measurements and shapes of importance positions. In order to find the correspondence between shapes and measurements, we introduced a method of representing 3D data called slice structure. A Neural Networks-based hierarchical learning model is presented to be compatible with the data representation. Primary slices are generated by matching the measurements set before the whole point cloud tuned by Convolutional Neural Network. We conducted the experiment on a 3D human dataset which contains 1706 examples. Our results demonstrate the effectiveness of the proposed framework with the average error 7.72% and fine visualization. This study indicates that paying more attention to local features is worthwhile when dealing with 3D shapes.