Cargando…
A default prior for regression coefficients
When the sample size is not too small, M-estimators of regression coefficients are approximately normal and unbiased. This leads to the familiar frequentist inference in terms of normality-based confidence intervals and p-values. From a Bayesian perspective, use of the (improper) uniform prior yield...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6745606/ https://www.ncbi.nlm.nih.gov/pubmed/30543154 http://dx.doi.org/10.1177/0962280218817792 |
Sumario: | When the sample size is not too small, M-estimators of regression coefficients are approximately normal and unbiased. This leads to the familiar frequentist inference in terms of normality-based confidence intervals and p-values. From a Bayesian perspective, use of the (improper) uniform prior yields matching results in the sense that posterior quantiles agree with one-sided confidence bounds. For this, and various other reasons, the uniform prior is often considered objective or non-informative. In spite of this, we argue that the uniform prior is not suitable as a default prior for inference about a regression coefficient in the context of the bio-medical and social sciences. We propose that a more suitable default choice is the normal distribution with mean zero and standard deviation equal to the standard error of the M-estimator. We base this recommendation on two arguments. First, we show that this prior is non-informative for inference about the sign of the regression coefficient. Second, we show that this prior agrees well with a meta-analysis of 50 articles from the MEDLINE database. |
---|